KÖZLEKEDÉS ÉS POSTAÚGYI MINISZTER

KÖZTI HIDSZABÁLYZAT

<table>
<thead>
<tr>
<th>Kötelező és Postaúgyi Minisztérium</th>
<th>KPM Sz. Hi/1—56 R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajánlott szakmai szabvány</td>
<td>G 82</td>
</tr>
</tbody>
</table>

A SZABVÁNY TARTALMA

<table>
<thead>
<tr>
<th>Tartalomcímkéz</th>
<th>Oldal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) Általános előírások</td>
<td>3</td>
</tr>
<tr>
<td>B) A műretés általános szabályai</td>
<td>9</td>
</tr>
<tr>
<td>C) Álétépmények</td>
<td>23</td>
</tr>
<tr>
<td>D) Adalékerkezetek</td>
<td>35</td>
</tr>
<tr>
<td>E) Helyes szerkezetekre vonatkozó különleges előírások</td>
<td>41</td>
</tr>
<tr>
<td>F) Vasbeton szerkezetek</td>
<td>69</td>
</tr>
<tr>
<td>G) Kő-, beton- és tárgykerkezetek</td>
<td>79</td>
</tr>
<tr>
<td>H) Faszerkezetek</td>
<td>109</td>
</tr>
<tr>
<td>J) Fesztisz keretkerkezetek</td>
<td>119</td>
</tr>
<tr>
<td>K) Előregrácst szerkezetek</td>
<td>141</td>
</tr>
<tr>
<td>L) Forgatombelélyezés, ellendirő vizsgálatok, nyilvántartás</td>
<td>157</td>
</tr>
<tr>
<td>M) A szövegben idézett szabványok</td>
<td>167</td>
</tr>
<tr>
<td>N) Becsőrendes tárgykerkezet</td>
<td>203</td>
</tr>
<tr>
<td>O) Szabványok nyilvánítva a 31.1.1966. TMG</td>
<td>207</td>
</tr>
</tbody>
</table>

Kidolgozta az Ut-Vasúttervező Vállalat közreműködésével a Közti Hidászabályzat Bizottság

Kiadja a KPM IX.2. Közti Hidászabály

Szabványok nyilvánítása a 21.1.1966. TMG

TARTALOMJEGYZÉK

A) Általános előírások

<table>
<thead>
<tr>
<th>Témakör</th>
<th>Oldal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A szabvány használya</td>
<td>11</td>
</tr>
<tr>
<td>2. A tervezési művelet</td>
<td>11</td>
</tr>
<tr>
<td>2.1 A tervezéshez szükséges adatok</td>
<td>11</td>
</tr>
<tr>
<td>2.2 A tervezet</td>
<td>11</td>
</tr>
<tr>
<td>2.3 A tervezet feltérjesztése</td>
<td>13</td>
</tr>
<tr>
<td>3. Tervezői felelősség</td>
<td>14</td>
</tr>
<tr>
<td>4. A szerkezeti általános szabályai</td>
<td>14</td>
</tr>
<tr>
<td>4.1 A hídállomás felületi tervezési terület méretei</td>
<td>14</td>
</tr>
<tr>
<td>4.11 Szélességi méretek</td>
<td>14</td>
</tr>
<tr>
<td>4.12 Magassági méretek</td>
<td>17</td>
</tr>
<tr>
<td>4.2 A hídak alatt nyílható terület méretei</td>
<td>17</td>
</tr>
<tr>
<td>4.21 Vízfolyás felületi hidak</td>
<td>17</td>
</tr>
<tr>
<td>4.22 Közúti felületi áthidalások</td>
<td>18</td>
</tr>
<tr>
<td>4.23 Vasút felületi áthidalások</td>
<td>19</td>
</tr>
<tr>
<td>4.24 Más akadály felületi áthidalások</td>
<td>20</td>
</tr>
<tr>
<td>4.3 Egyéb előírások</td>
<td>20</td>
</tr>
<tr>
<td>4.31 A szerkezeti rendszer megvalósítása</td>
<td>20</td>
</tr>
<tr>
<td>4.32 Palástviharos és gyalogállás</td>
<td>20</td>
</tr>
<tr>
<td>4.33 Vízvezetés</td>
<td>21</td>
</tr>
<tr>
<td>4.34 Saruk, sarug eredők</td>
<td>21</td>
</tr>
<tr>
<td>4.35 Időjárási</td>
<td>21</td>
</tr>
<tr>
<td>4.36 Előforduló szükséglet</td>
<td>22</td>
</tr>
<tr>
<td>4.37 Korlátozás</td>
<td>22</td>
</tr>
<tr>
<td>4.38 Elektromos vezetékek</td>
<td>22</td>
</tr>
<tr>
<td>4.39 Tömegközút- és füldenesű sósza</td>
<td>22</td>
</tr>
</tbody>
</table>

B) A méretezés általános szabályai

<table>
<thead>
<tr>
<th>Témakör</th>
<th>Oldal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Az erőtani számlítás elvi alapja</td>
<td>25</td>
</tr>
<tr>
<td>2. Az erőtani számlítás során figyelembe veendő cerhelő erők és mozgások</td>
<td>25</td>
</tr>
<tr>
<td>2.1 Állando, ill. tartós jellegű cerhelő erők és mozgások</td>
<td>25</td>
</tr>
<tr>
<td>2.11 Óvókó</td>
<td>25</td>
</tr>
<tr>
<td>2.12 Földnyomás</td>
<td>26</td>
</tr>
<tr>
<td>2.13 Víznyomás</td>
<td>26</td>
</tr>
<tr>
<td>2.14 Hőmérsékleti változás</td>
<td>26</td>
</tr>
<tr>
<td>2.15 Támaszmegsőtt</td>
<td>26</td>
</tr>
<tr>
<td>2.16 Zsigorodás</td>
<td>26</td>
</tr>
<tr>
<td>2.17 Listaiak változás</td>
<td>26</td>
</tr>
<tr>
<td>2.18 Hosszúharc</td>
<td>26</td>
</tr>
<tr>
<td>2.2 Esetleges jellegű terhek</td>
<td>27</td>
</tr>
<tr>
<td>2.21 Hazamozgató, dinamikus tényleges</td>
<td>27</td>
</tr>
<tr>
<td>2.22 Széthúthar</td>
<td>29</td>
</tr>
<tr>
<td>Tartalomjegyzék</td>
<td>Oldal</td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>2.23 Sűrűdődből származó támasterek</td>
<td>30</td>
</tr>
<tr>
<td>2.24 Fekete- indítóerő</td>
<td>30</td>
</tr>
<tr>
<td>2.25 Jégeher</td>
<td>30</td>
</tr>
<tr>
<td>2.26 Jarnövek ökölleterjedés</td>
<td>31</td>
</tr>
<tr>
<td>2.27 Építési alatti terhek</td>
<td>31</td>
</tr>
<tr>
<td>2.28 Egyéb esetleges terhek</td>
<td>31</td>
</tr>
<tr>
<td>3. A teherbírság igazolása</td>
<td>31</td>
</tr>
<tr>
<td>3.1 Hasárógépbevétel</td>
<td>31</td>
</tr>
<tr>
<td>3.2 Mérésiadó igénybevétel</td>
<td>31</td>
</tr>
<tr>
<td>4. Az illelőnyugtág igazolása</td>
<td>32</td>
</tr>
<tr>
<td>5. Az alkaválokhoz hasonlók elmaradásai</td>
<td>33</td>
</tr>
</tbody>
</table>

C) Álégítmények

1. Talafeldírás	37
2. Az erőtani számítás során figyelembe veendő terhelő erők és mozgások; alakváltozási jellemzők	38
3. Az erőtani számítás során figyelembe veendő méretek és feltevések	39
4. Szerkezetető szabályok	39

D) Acélkeresztkezetek

1. Anyagok	43
2. Az erőtani számítás során figyelembe veendő terhelő erők és mozgások; alakváltozási jellemzők	44
3. Az erőtani számítás során figyelembe veendő méretek és feltevések	44
3.1 Támaszköz	44
3.2 A keresztmetszet méretei	45
3.3 Hosszstarkó	45
3.4 Keretmetszetek	46
3.5 Taralakósz	46
3.6 Rácsos tartók	46
3.7 Szilárdmetszetek	46
3.8 Sarlk	46
4. A teherbírság igazolása	47
4.1 Mérésiadó igénybevétel	47
4.2 A fáradást figyelembe vétele	47
4.3 Hazárógyebetelep	47
4.4 Középtervű húzás	47
4.22 Középtervű nyomás, kilajló hossz	48
4.221 Állandó keresztmetszetet támogató szabványú egységek (rácstos tartók régió, levek stb)	48
4.222 Állandó keresztmetszetet támogató egységek (rácstos tartók régió)	48
4.23 Változó keresztmetszetet tartó egységek	53
4.24 Húzással, ley, nyomással egyidejű játéka	53
4.25 Szegek, caavarok, csapok	54
4.3 Égikis vizsgálatok	54
4.31 Gerinczelemes tartók	54
4.32 Húzással, ley, nyomással egyidejű játéka	54
4.312 Négyzetes, négyzetes tartók	54
4.313 Kereműtek	57
4.314 Nyomozó év oldaláramnyírás mérvadéje (kőbánya)	57

E) Hegesztett szerkezetekre vonatkozó különleges előírások

1. Anyagok	71
2. A száízomensora vonatkozó különleges szabályok	71
3. A szerkezetekre vonatkozó különleges szabályok	75
3.1 Különleges előírások	75
3.2 Varratok	75
3.3 Gerinczelemes tartók	76
3.4 Rácsos tartók	76
3.5 Pályavirágok	76
3.6 Régi hídak hegesztézéséhez törvény szerű erőtevékenység, javítás, átalakítás	76
3.7 A varratok készítési és minőségi sorrendje	78
3.8 Hőkezelés, ellenálló vizsgálatok, jelölések	78

F) Vásutat szerkezetek

1. Anyagok	81
1.1 Alkotóanyagok	81
1.2 Készülékanyag	81
1.3 Alándalkanyag	82
1.4 Víz	83
1.5 Beton	85
2. Az erőtani számítás során figyelembe veendő terhelő erők és mozgások; alakváltozási jellemzők	86
3. Az erőtani számítás során figyelembe veendő méretek és feltevések	87
3.1 Támaszköz	87
3.2 A száízomensora vonatkozó támogatás	88
3.3 Lemezes gerenda keresztmetszet	88
3.4 Lemezes tartók	89
3.5 Gerendakeresztesek	91
3.6 Oszlopopok, keretmetszetek	92
3.7 Védekezések	92
3.8 Csőráj, szerkezeti kő, szerkezeti gerenda	94
G) Kő-, beton- és tégla szerkezetek

1. Anyagok .. 111
2. Az erősítő számítás során figyelembe veendő terhelő erők és mozgások ; alakváltozás jellemzők ... 112
3. Az erősítő számítás során figyelembe veendő méretek és feltevések .. 113
4. A teherbírás igazolása ... 114
5. Az alakváltozások ellenőrzése 116
6. Szerkesztési szabályok .. 116

H) Faszerkezetek

1. Anyagok .. 121
2. Az erősítő számítás során figyelembe veendő terhelő erők és mozgások ; alakváltozás jellemzők 123
3. Az erősítő számítás során figyelembe veendő méretek és feltevések ... 124
4. A teherbírás igazolása ... 127
4.1 Mérésedés igénybevétel 127
4.2 Határértékek beánulás .. 127
4.3 Nyomó övék oldalirányú megszámlálása 134
5. Az alakváltozások ellenőrzése 135
6. Szerkesztési szabályok .. 136

I) Feszített betonszerkezetek

1. Anyagok .. 143
1.1 Acélbemer ... 143
1.2 Ködanyag .. 143
1.3 Adaléktömb ... 144
1.4 Víz .. 145
1.5 Beton .. 145
2. Az erősítő számítás során figyelembe veendő terhelő erők és mozgások ; alakváltozás jellemzők ... 146
3. Az erősítő számítás során figyelembe veendő méretek és feltevések ... 149
4. A teherbírás igazolása ... 149
4.1 Vízszint a feszítő szerkezethez 149
4.2 Vízszint a szállítás, szerelés, beemelés szb. mérésedési helyzetekben ... 150
4.3 A reprodukációs-szabályzat 150
4.4 Határértékek beánulás .. 150

K) Előregyártott szerkezetek

1. Általános előírások ... 159
2. Anyagok .. 159
3. Az erősítő számítás során figyelembe veendő terhelő erők és mozgások ; alakváltozás jellemzők 160
4. Az erősítő számítás elvi alapja 160
5. A teherbírás igazolása ... 161
6. Az alakváltozások ellenőrzése 162
7. Szerkesztési szabályok .. 162
8. Műszaki megvizsgálat ... 164

L) Forgalombahelyezés, ellenőrző vizsgálatok, nyilvántartás

1. Forgalombahelyezés ... 169
1.1 A forgalombahelyezett megfelelő műszaki megvizsgálat .. 169
1.11 Általánosságban ... 169
1.12 Akadályos esetekben .. 169
1.13 Kő-, beton- és tégla szerkezetek esetében 170
1.14 Vízbeton szerkezetek esetében 170
1.15 Faszerkezetek esetében 170
1.16 A vízszint, pályasorakozás és hídtervezők megvizsgálat .. 170
1.2 Próbaterhelés .. 171
1.21 Általános rendelkezések 171
1.22 Általános rendelkezések 171
1.23 Próbaterhelés .. 172
1.24 Próbaterhelés .. 172

2. Ellenőrző vizsgálatok .. 173
2.1 Hídállapot ellenőrzés .. 173
2.2 Nyomóellenőrzés hídpróbaterhelés 173
2.4 Időszakos hídtervezők 174
3. Nyilvántartás .. 175
3.1 Törzskönyv .. 175
3.2 Hídlap .. 176
3.3 Csoportos nyilvántartás 176
4. Vegyes rendelkezések .. 178
Nyilvántartási irányok ... 179
A szövegben idézett szabványok 203
Betűrendszer tárgymutató .. 207
A.

ÁLTALÁNOS ELŐÍRÁSOK
1. A SZABVÁNY HATÁLYA

1.1 A Közúti Hídészakaszok hatálya kiterjed minden olyan végleges és ideiglenes jellegű áthidaló (híd, átirat) tervezésére, forgalomba helyezésére, megújítására és nyilvántartására, amelyen közúti forgalom vagy közúti forgalom is vezet át. Irányelvek szolgáltak olyan áthidalók tervezésére, forgalomba helyezésére, megújítására és nyilvántartására, és melyekre más szabvány, szabályzat vagy külön rendelet nem intézkedik.

1.2 A közúti hidak feltevézésére (építési munkára, építésére, építési munkára (pl. mágatlásra) és életévézésre, valamint átalakításra, megerősítésére és újjáépítésére nézve érvényesek mindegyik a szabványok és hatósági előírások, amelyek a jelen szabványban foglaltakkal nincsenek ellentében.

1.3 Közúti és vasúti közös forgalmú, hidak tervezésének, forgalomba helyezésének, megújításának és nyilvántartásának jelen szabvány előírásain túl még a vasúti hidakra vonatkozó előírásokat is be kell tartani, Ellentmondás esetében a Közlekedés- és Postaiügyi Minisztérium (fovábbiakban KPM) döntését kell kikérni.

2. A TERVEZÉSI MÓVELET

A tervezési művelet a híd tervezéséhez szükséges adatok beszerzéséből, a műszaki tervezetnek és tartozékainak elérhetőségeből és azoknak jóváhagyás céljából történő feltételezésekéből áll.

2.1 A TERVEZÉSHEZ SZÜKSÉGES ADATOK

2.1.1 Az újnak a hídtervezés alapjául szolgáló minőségi karosszérvénye a 4.1 pontban előírtak szerint.

2.1.2 Az átiratokkal azonos előírásokat a 4.1 pontban előírtak szerint.

2.1.3 Az átiratokkal azonos előírásokat a 4.1 pontban előírtak szerint.

2.1.4 A tervezési és a bélyegzés visszaadásra vonatkozó adatok a 4.1 pontban előírtak szerint.

2.1.5 Az esetleges lefolyás lépésére, világításra, az áthidaló tőkevóére, világító látásra stb.-re vonatkozó adatok.

2.2.1 A tervezési és a bélyegzés visszaadásra vonatkozó adatok a 4.1 pontban előírtak szerint.

2.2.2 A tervezési és a bélyegzés visszaadásra vonatkozó adatok a 4.1 pontban előírtak szerint.

2.2.3 A tervezési és a bélyegzés visszaadásra vonatkozó adatok a 4.1 pontban előírtak szerint.

2.2.4 A tervezési és a bélyegzés visszaadásra vonatkozó adatok a 4.1 pontban előírtak szerint.

2.2.5 A tervezési és a bélyegzés visszaadásra vonatkozó adatok a 4.1 pontban előírtak szerint.

2.2.6 A tervezési és a bélyegzés visszaadásra vonatkozó adatok a 4.1 pontban előírtak szerint.

2.2.7 A tervezési és a bélyegzés visszaadásra vonatkozó adatok a 4.1 pontban előírtak szerint.

2.2.8 A tervezési és a bélyegzés visszaadásra vonatkozó adatok a 4.1 pontban előírtak szerint.

2.2.9 A tervezési és a bélyegzés visszaadásra vonatkozó adatok a 4.1 pontban előírtak szerint.

2.2.10 A tervezési és a bélyegzés visszaadásra vonatkozó adatok a 4.1 pontban előírtak szerint.

2.2.11 A tervezési és a bélyegzés visszaadásra vonatkozó adatok a 4.1 pontban előírtak szerint.

2.2.12 A tervezési és a bélyegzés visszaadásra vonatkozó adatok a 4.1 pontban előírtak szerint.

2.2.13 A tervezési és a bélyegzés visszaadásra vonatkozó adatok a 4.1 pontban előírtak szerint.
A. Általános előírások

idélgénés létesítmények (állványzat, szalazás stb.) tervei és szerelési tervek, talajmenetek szakvélemény, ill. a talaj- és talajvíz-feltárási adatok, vízmintázati adatok és szakmai, továbbá egyéb tervekről (pl. helyielső eljárás határozatos).

A tervezéshez árverést, munkaszervezési tervek, állványzati tervek és szalazási tervek csak akkor kell készíteni, ha az érvényben lévő utasítások vagy rendelkezések szerint a tervezés feladata, a tervezés megőrzése biztonságosságát kellően biztosítható.

A tervezéshez a tervekhez tartozóan szabályozottak és a tervekhez tartozó anyagok megfelelően vannak elhelyezve, az anyagok megfelelően vannak elhelyezve.

2.2 A műszaki leírás tartalmazza a tervekhez felhasznált fontos műszaki dokumentumokat, a szerkezetekhez, valamint az esetleges megfelelő vagy kompatibilis létesítményekhez, bővítési részekhez, értékesítéshez és hasznosításához szükséges leírásokat.

A műszaki leírás a következő részeknek tartalmazza:

- a híd megfelelő felhasználását és működését;
- a híd beruházási tényezőkét és felhasználási tényezőkét;
- a híd konkrét felhasználási tényezőkét.

2.3 Az erőforrások és ebből folytul több területen kialakulhatnak.

2.4 Az erőforrások és ebből folytul több területen kialakulhatnak.

2.5 Az erőforrások és ebből folytul több területen kialakulhatnak. A tervezéshez az érvényben lévő utasítások és rendelkezések szerint készíteni kell minden esetben.

2.6 A tervezéshez az érvényben lévő utasítások és rendelkezések szerint készíteni kell minden esetben.
3. TERVEZŐI FELELŐSSÉG

A hídtervezés terveinek és a sztatikai számításoknak helyességéért, általában a tervező vállalat, ill. a tervező mérnökök felelős és ezt a felelősséget a tervezők a hatóságok részéről törvént ellenőrzése és jóváhagyása nem csökkenti.

A tervezés ellenőrző mérnökök felelős a megkészítés tervezőben ellenőrzést és esetleg javítást sztatikai számítások helyességéről, valamint az idegénéses jellegű hídnak méréseit esetenként, a KPM rendelkezéseinek megfelelően kell megállapítani.

4. A SZERKEZTÉS ÁLTALÁNOS SZABÁLYAI

Végleges jellegű hídon a pálya feletti és a híd alatt nyitvatartandó tér méreteit, ha az alábbiakban nincsen szabályozva, valamint az idegénéses jellegű hídak méréseit esetenként, a KPM rendelkezéseinek megfelelően kell megállapítani.

4.1 A HÍDPÁLYA FELETT NYITVATARTANDÓ TÉR MÉRETEI

A hídtervezés alapját képező ütkeresztszélveny — amely nem feltételűleg azonos a megfelelő vagy a híd alatt egyébben épülő ütkeresztszélvenyével — az építtető javítási alapján a KPM állapítja meg. A keresztszélveny megállapításánál a forgalom sűrűségére, sebességére és ezek várható fejlődésére, évben fokozott hídnál a pályaszélességére, a szabad látószögénél és esetleges egyéb szempontokra kell figyelemmel lenni.

4.11 Szélességi méretek

![Diagram]

1. ábra

2. ábra

4.111 Ha az átvonatost azon kis szegélyekre alkülönített gyaloglóra és kerékpárút nincsen (1. ábra) — általában külső szakaszok hídjainál — a hídtervezés szerinti méretek, az átvonatost út szélességtől és a híd hosszától függően a következő oldalon lévő táblázat alapján kell megállapítani:

- a) A kötőzet szabványos teljes koronaszélességében, kis méret szegélyek nélkül, a 2. ábra szerint kell átvonatni.
A készlet szabványos növelt borkolladásossággal a 4. ábra szerint kell átjelzéni. E hídon kiemelt zöldbeketek — általában kerékvédeksor, kivételesen gyalogjárókat — kell alkalmazni.

A kerékvédekk szélessége a korlát II. bármlény, az alsófolyóni fölé emelkedő szerkezeti elem (pl. főtartó) felől elég mérv mindegyik oldalán 0,50—0,50 m legyen.

A kerékvédekk belső által közötti távolság I. és II. osztályú út esetében 0,75—0,75 m-rell III. és IV. osztályú út esetében 0,50—0,50 m-rell növelt szabványos borkolladásosság legyen.

Ha a helyi villázók indokolatlan tehetik azt, hogy a gyalogjárók és a jármúforralók szempontjából a közút megszűnik, a 0,50 m-szer kerékvédekk helyett 1,25 m széles gyalogjárókat kell építeni.

A gyalogjárókat belső által közötti távolság mind az i. és II. osztályú út esetében 0,50—0,50 m legyen.

Ha a helyi villázók indokolatlan tehetik azt, hogy a gyalogjárók és a jármúforralók szempontjából a közút megszűnik, a 0,50 m-szer kerékvédekk helyett 1,25 m széles gyalogjárókat kell építeni.

A hídon átjelzéni a kerékvédekk korlát 3,8 m, min. 3,8 m-elején 7,0 m, min. 4,5 m, min. 7,0 m, min. 2,5 m-elején 1,0 m.

A közelii villámvasutak vagy egyéb vasutak részre szükséges járatosságszélesség is esetenként kell elbírálni a mindenkori árészerv és rákészerv figyelembevételével, de normál nyomáv (143 mm) esetében a járatosságszélesség 3,3 m-nél kisebb ne lehet.

A hídon átjelzéni a kerékvédekk korlát 3,8 m, min. 3,8 m-elején 7,0 m, min. 4,5 m, min. 7,0 m, min. 2,5 m-elején 1,0 m.

A hídon átjelzéni a kerékvédekk korlát 3,8 m, min. 3,8 m-elején 7,0 m, min. 4,5 m, min. 7,0 m, min. 2,5 m-elején 1,0 m.

A hídon átjelzéni a kerékvédekk korlát 3,8 m, min. 3,8 m-elején 7,0 m, min. 4,5 m, min. 7,0 m, min. 2,5 m-elején 1,0 m.

A hídon átjelzéni a kerékvédekk korlát 3,8 m, min. 3,8 m-elején 7,0 m, min. 4,5 m, min. 7,0 m, min. 2,5 m-elején 1,0 m.
4.213 A hídkeretek aló élénnek magassága

a) Kisebb, nem torzulható vízfolyások

Ha a mértékdö magasabbban megállapítható, hogy a vízfolyás híd középső és aló közötti magasságát így kiszámítható:

\[ext{aló magassága} = \left(\frac{\text{előfokozott vízfolyás magassága} - \text{híd magassága}}{2}\right) \]

b) Tora-zátható vízfolyások

Ha a vízfolyás híd középső és aló közötti magasságát így kiszámítható:

\[ext{aló magassága} = \left(\frac{\text{híd magassága}}{2}\right) \]

4.22 Koronal és áthidalások

4.221 Szélességi méretek

a) Az áthidaló átjárók nélkül vagy korok közötti vízfelület magassága

\[ext{aló magassága} = \left(\frac{\text{híd magassága} + \text{vizelet magassága}}{2}\right) \]

b) Az áthidaló átjárók közötti vízfelület magassága

\[ext{aló magassága} = \left(\frac{\text{vizelet magassága}}{2}\right) \]

4.2.22 Magassági méretek

Az áthidaló átjárók nélkül és az áthidaló átjárók közötti vízfelület magassága

\[ext{aló magassága} = \left(\frac{\text{híd magassága} + \text{vizelet magassága}}{2}\right) \]

b) Az áthidaló átjárók közötti vízfelület magassága

\[ext{aló magassága} = \left(\frac{\text{vizelet magassága}}{2}\right) \]
4.33 Vízelvezetés
A műtárgyak és minden további építmény vízelvezetését a tervezés során gondoskodni kell.
Ha a hidapadás kimetszés nincs, a pálya vízelvezetése céljából általában elengedhetetlen a pályalemez alsó felületén lévő szintetikus kiküszöbölést, és a hideg kémény mellett elhelyezett vizesfúvók elhelyezését.

A vízelvezetők és a vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

4.33.1 A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.

A vízelvezetők alapja.
A vízelvezetők alapokat a hidapadás általános vízelvezetési felületén láthatók.
4.36 Elvédő szögacél

Kilön elhajtható szerkezetet el nem ísztott pályavégéken, ill. pályamegbeszéléseknél elvédő szögacél késő kell elhelyezni a kiemelt szegélyek körülpályája felől belső elén, ha az a kerámia vagy kötőszállyel roncsa eltávo.

A kiemelt szegély belső sarkait vízszintes síkban 0,5 m sugarú negyedkör lezárásával kell kialakítani, s az elvédő szögacél ennek megfelelően kell készíteni.

4.37 Korlát

3,0 m-nél nagyobb nyúltus hídak esetén szerkezeti korlátat kell elosztani, amely nemcsak a híd közéke helyen, hanem hetadik negyedéig ismétlődő legnyúlt hídakat is korlátozni ahol az esetben, ha a híd pályaszéria 2,0 m-nél nagyobb magasságban van az áthidalás alapjából legnyúltabb pontja felett.

A 4.3.3 1. pont szerint épülő hídakon közel korlátot kell alkalmazni. Ha az út hídhoz csatlakozó szakaszán is van közeli korlát, azt a hídhoz változatlan magassággal kell átvenni. Ha a híd nyúlja 3,0 m-nél, később és a híd pályaszéria 2,0 m-nél nem nagyobb magasságban van az áthidalás alapjából legnyúltabb pontja felett, akkor a közeli korlátot változatlan kialakítással kell átvenni, egyéb esetben a közeli korlátot közvetlen vízszintes raggal kell kiegészíteni.

Korlátot kell alkalmazni a párhuzamos szárnyalakon is, ha csak azokon tőmű mellvédek nincsenek.

A korlát legkisebb magassága

- a kerékvező felső alja felett

- a gyakorlóállás felső alja felett 0,90 m

- a vízalakító és jövőleges vízfolyások feletti hideknél 1,00 m

- a kerékpályára felső alja felett 1,05 m

- a korlát a kerékpályát határolja 1,40 m

A korlát legalább vízszintes régió a kerékvező, ill. gyakorlóállás felső alja felett legfeljebb 0,20 m magasságban lehet elhelyezni s 0,30 m-nél nagyobb végigmenő vízszintes hágók is felett sem alkalmazhatók.

A függőleges osztályok közeinek távolsága 0,15 m-nél nagyobb nem lehet.

4.38 Elektromos vezetékek

A híd alatt, a hídhoz és a híd felett áthaladó elektromos vezetékekkel kapcsolatos biztonsági követelményeket a híd tervezése során figyelembe kell venni.

Az hidakat földállón kell.

4.39 Töltéselőző földmunka burkoldata

A töltéselőző földmunka burkoldatának kialakítására az MNOSZ 15119-ben foglaltakat kell áttekintés szerűen alkalmazni.
I. AZ ERŐTANI SZÁMÍTÁS ELVLI ALAPJAI

1.1 A híd (mind az alépítmény, mind a felépítmény) a szerkezeti követelményeken túl feleljen meg a 2. pontban megadott terhelő erőkre és mozgásokra a 3., 4., ill. 5. pontban megadott cselekbázis, állékonyzsági ill. alakváltozásai követelményeknek.

E követelmények teljesítését erőtanil számításával kell igazolni, kivéve, ha annál is készítőre, hogy azok teljesíthetők vannak.

1.2 Az erőtani számítás feltevései a lehető legjobban egyezzenek meg a szerkezeti tényleges erőjekkel.

1.3 Az erőtani számítás során a mérési adatok felhasználásánál általában a rugósas és homogén anyagú tartókra vonatkozó módszerekre kell alkalmazni. A tartó másodrendű alakváltozásaihoz származó hatások elhanyagolhatók, kivéve, ha a tartó peremén megváltozott alakja a tartó erőjének számottevően befolyásolja (pl. lapos ivének, függőhidak).

A határírnyékbelet kismeretének alapján szokat a módszereket kell alkalmazni, melyeket a szabvány az építési anyagoktól függően megad.

1.4 Fontos a tengeri számtani eljárás alkalmazása csak az esetben engedhető meg, ha az elméleti vagy kísérleti alapton igazolt és azt a KPM jóváhagyta.

2. AZ ERŐTANI SZÁMÍTÁS SORÁN FIGYELEMBE VENNDŐ TERHELŐ ERŐK ÉS MOZGÁSOK

A 3., 4., ill. 5. pontban felsorolt követelmények teljesítésének igazolása során az alábbi terhelő erőket és mozgásokat kell figyelembe venni.

2.1 ÁLLANDÓ, ILL. TARTÓS JELLEGŰ TERHELŐ ERŐK ÉS MOZGÁSOK

2.11 Összefoglaló

A szerkezet saját súlyak és a szerkezetén állandóan vagy tartósan elhelyezett egyéb súlyokat a cselekbázis elhatárolására vonatkozóan kell figyelembe venni. A súlyok előállításában csak olyan egyszerű feltevéshez vehető számítás.

A gyakran előforduló hőépítési anyagok, ill. burkolatok fırófogyasztásának alapján az alábbi átlagértékekkel vehető számításába:

Az előállítási és a burkolóanyagok számtani eljárásai, mint a 2.1. pontban feltüntetett módszerekre, a KPM jóváhagyásra van szükség.

Más építési anyag térzefogyasztására az MNOSZ 510, MNOSZ 512, ill. az MNOSZ 514 szerint kell figyelembe venni.
2.12 Földönymás

A földönymás és a földönymást az MNOSZ 15 002 R szerint — a C. fejezetben előírtakat is betartva — a talajfokozatot jellemző várható kedvezőtlen szőlő értékeit figyelembe véve kell számításba venni.

2.13 Víznyomás

A víznyomást, ill. vízfelhőtartalmat az MNOSZ 15 002 R szerint — a C. fejezetben előírtak figyelembe véve — a várható legkisebb és legnagyobb vízszintnek megfelelően kell számításba venni.

2.14 Hőmérsékletváltozás

2.14.1 Hidak acélkeresztkezeinek hómörséklevegődése +10°C felsőkorlát építő, ill. gyárjáti hőmérséklet hozzáadását 35°C értékkel kell számításba venni.

Acélkeresztkezetek egyenlően felmelegedés — ha ennek figyelembe vétele indokolt — 15°C hőmérséklet-különbségkel kell számítani.

Olyan acélkeresztkezletek, amelyek nagyobb hőmérsékletkülönbségekkel vanak, hogy 15°C hőmérsékletkülönbséget kell számításba venni, ilyen vészrezetkezetei egyenlően felmelegedésével számolni kell.

Az acél hőkiterjedési együtthatója 1°C-ra

\[a = 0.000012 \]

2.14.2 Hidak beton, vasbeton, valamint kő- és téglaalakítható kezének hőmérsékletkülönbsége +10°C felsőkorlát építő, ill. gyárjáti hőmérséklet hozzáadását 15°C értékkel kell számításba venni.

Ha a legkisebb teljes szerkezeti vasúthoz az esetleges felületiak együtta 70 cm-nél nagyobban, a hőmérsékletkülönbség +10°C értétként vehető fel. A legkisebb mérést megállapítás során a teljesen árt üregük (pl. szerkezeti tartó) nem kell figyelembe venni, ha azok kormazsmezete a teljes kormazsmezet 50%-ánál kisebb.

Betongreszterek egyenlően felmelegedését figyelembe venni általában nem kell, de ha figyelembe vételéhez kivevelen más indokolt, ezt 5°C-ra kell felvenni.

Vasbeton szerkezettel szellőzés alakításához, be nem betonozott acélkeresztkezetei pl. szabad vonóra) hőmérsékletkülönbséget a 2.14.1 pont szerint kell számításba venni.

A beton, ill. vasbeton hőkiterjedési együtthatója 1°C-ra

\[a = 0.000012 \]

kő- és téglaalakítható

\[a = 0.000009 \]

2.15 Támaszmogás

A támaszpontok megszűntetése hatásait a talajmechanizmus szövődésményben megadott, ill. annak alapán meghatározott szőlő értékeket kell számításba venni.

2.16 Zeugorodás

Beton, vasbeton, fesztivebeton, ill. együttalakított szerkezeteknél a zseborodás hatásait a vonatszőlő fejezetben (F, G, K) előírtak szerint kell számításba venni.

2.17 Lassú alakváltozás

Beton, vasbeton, fesztivebeton, ill. együttalakított szerkezeteknél a lassú alakváltozás hatásait a vonatszőlő fejezetben (F, G, K) előírtak szerint kell számításba venni.

2.18 Feszítőerők

A feszítőerők általános hatásait a feszített betonszerkezetekre vonatszőlő fejezetben (j) szerint kell számításba venni.

2.2 ESZTÉLEGES JELLEGŰ TERHEK

2.2.1 Hasznos terhek, dinamikus tényező

A közúti hidak méretmódítása során figyelembe véve hasznos terhek a következők:

- a kocsielpálya terhe,
- a közút-vasút (pl. villamossági) pálya terhe,
- a gyalogkerékpár elnyomás (gyaloghídak), a kerékpárjárművek, a kerékpárkerék terhek,
- a hídok mögötti ülő-terhek,
- a kormánykorai ható terhek.

Fentiek közül a kocsielpályák, a közút-vasút pálya, a gyalogkerékpár és a kerékpárkerék terhetei általában a 2.21. pont szerinti dinamikus tényezővel szorosan kell számításba venni.

A számításba venni — alábbiakban előírt — hasznos terhek általános egyenlő, ilyen várható ható határt jellemzőnek.

A közúti hidak, a teherbírás szempontjából általában a 2.21. pont szerinti, A, B, C vagy D jelű terhelési osztályok egyébként kell sorolni. A kocsielpálya és a hídok mögötti ülő-terhe a híd terhelési osztályát felülvizsgáló, a híd terhelési osztályát a KPM eseténként állapítható meg, azonban különleges esetekben (pl. ideiglenes hidak, független) a terhelési osztályokban meghatározottak előírta terhekkel is előírt.

2.2.1 A kocsielpályák a híd terhelési osztályát szerint a 9. ábra és a II. táblázatban megadott egyenleten járműhengerből és az ezzel egyidejűen a kocsielpálya teljes felületén — a jármű átlag elforgatott területen is — alkalmazandó 300 kg/m² egyenletes megosódás, járműsort jellemző, tehervbéből által.
A járműveket a köcskép által a vizsgált hatá szempontjából mérsékelt helyen kell elhelyezni. A jármű hossztengelye mindig párhuzamos a pályagyűjtőnél. A jármű keresztezési területében szükségessé válik, hogy azokat a kis méretű területeken, ahol nincs kiemelten hosszú tenger vagy tó, a járművek közvetlenül a száraz föld felületén is megaprózjanak.

A járművek közvetlenül a híd hossztengelyére irányulóan keresztül terepről, ahol a járműkerék és a jármű fogalma távolból nézve körül van a kerék szélességétől függően az összes járműhibát. A járművek közvetlenül a híd hossztengelyére irányulóan a híd közvetlenül a híd hossztengelyére irányulóan a kerék keretek között terepről, ahol a járművek közvetlenül a száraz föld felületén is megaprózjanak.

A járművek közvetlenül a híd hossztengelyére irányulóan a kerék keretek között terepről, ahol a járművek közvetlenül a száraz föld felületén is megaprózjanak, és ezért az a járművek közvetlenül a híd hossztengelyére irányulóan a kerék keretek között terepről, ahol a járművek közvetlenül a száraz föld felületén is megaprózjanak.

A járművek közvetlenül a híd hossztengelyére irányulóan a kerék keretek között terepről, ahol a járművek közvetlenül a száraz föld felületén is megaprózjanak, és ezért az a járművek közvetlenül a híd hossztengelyére irányulóan a kerék keretek között terepről, ahol a járművek közvetlenül a száraz föld felületén is megaprózjanak.
A jármű ütközés hatása — a híd terhelési osztályánként függelően — egy 1,2 m magasságban vízszintesen, a forgalmi ság irányával párhuzamosan ható 60 t, vagy arra merőlegesen ható 30 t nagyságú asztlánc erővel kell figyelembe venni. A két erő közül a kivezetőerőként kell számításba venni. Ha a támaszok keretrendszerei az abban lévő forgalmi sávban lévő rendszeres érintéshez vezethetnek, az esetben a támaszat alátámasztott erő nagysága bármelyik terhelés esetében 60 t.

Ha a szerkezeti elemen helyezkedik fel a fogva, vagy külön ebben a célból készítenek, legtöbb 25 cm magas, 50 cm széles és a szerkezeti elem előtt 10,0 m-re kezdődő kiselt szegélyek a járművek ütközésével védve van, az ütközésből származó árnyékban nem kell.

A korosztály kibontakozásának ellenére nem szükséges az egész területen megfigyelni. Az alátámasztott erő a terhelési osztályok megfeledkezett kibontakozását megakadályozó esetekben kisebb, egyedi megállapodás szerint állítható.

2.27 Epítési alatt eltávolított terhek

Indokolat esetén a hídtereket áttelepítés és a kerület eladását illető állapotokat (pl. szabad alátét, előregyártás) vizsgálására is ki kell terjeszteni. Ennek során az esetleges területek alattá váltak, a tényleges előforduló, ill. várható értékekkel kell figyelembe venni.

Ha a helyi környezetnek nagyobb terhelési szállítási védelemet nem teszik indokoltvá, az összes munkaszín természetes terhelés 100 kg/m² egyenletesen megosztott erő vagy 2 db egymással 1,0 m távolságból levő 100—100 kg-os összpontos erőt kell számításba venni.

Teljes terület alatt a munkaszínnek érzékenységét kisebb, a közlekedésre és angyaltároláshoz használt területekkel együtt.

2.88 Egyéb esetleges terhek

A folyóvize áramlásából és hullámvizezetéből származó víznyomás és az osztályként ütközésből származó hatás alattá váltak, nem kell figyelembe venni. Különleges körülmények között (pl. célkópójárak, a hideg híd, etc.), ahol a terhek jelentékeny igénybevételnek okozhatnak, azokat az MNSZ 15228 A előírásai szerint kell számításba venni.

Hídterhet és függőleges jégtérfogatok alattá váltakban nem kell. Különleges körülmények között, ha ezen terhek jelentékeny igénybevételük okozhatnak, azok szállítási védelemre a KPM esetben rendelkeznek.

A vízgyűjtő kori, vízigénylő árhelyű síkság, ha ezek alkalmazására szántak, szintén figyelembe kell végeznünk.

3. A TEHÉRBÍRÁS IGAZOLÁSA

A híd legyen kihelyezett, vagyis a hídak, ill. egyéb térszéleimemek méretre úgy kell megállapí-
tani, hogy azok a 2. pontban felsorolt terhek hatásaikra tökéletesen ne következtessze be. Ebből a célból (állapító testvéreink szövetségi) azokkal a körülményekkel, hogy ezek a terhek jelentékeny igénybevételük és a terhez hozzávetőleges kis erő mértékei lehetnek.

A vízgyűjtő területével kapcsolatos hídterhez és jégtérfogatok teljesítményének megállapítása a KPM esetben rendelkeznek.
3.2 MÉRTÉKADÓ IGÉNYBEVÉTEL

3.2.1 A mértékelő igénybevétele az
\[Y_n = e^{\gamma \sum Y_x + n \Sigma Y_x} \]
(1)

kifejezésnek a szabályszög tartalom (kerezeszmetszet stb.) méretezése szempontjából a legkedvezőedesebb értéke. E képletben

\[\sum Y_x \]
(2.1) pontban felsorolt állandó, ill. tartó jellegű terhelő erőkből és mozgásokból a kedvezőedésen származó tényező figyelembevételével számítjuk igénybevételével;

\[\sum Y_x \]
(2.2) pontban felsorolt esetleges jellegű terhelőből (a hasznos teher dinamikus tényezővel szorosra)

a kedvezőedésen szálló értékektől számított igénybevétel az biztonsági tényezővel,

a biztonsági tényező, amelynek értéke a figyelembe vett esetleges teherfajták számára függ,

ha az esetleges terhelés egyenlő teherfajtásból származik (a jármű és a járműhöz helyesíráttos 300 kg/m², valamint a villamosvasút nyomon 600 kg/m²) és a biztonsági tényező

ha az esetleges terhelés valamennyi szabály szerinti, egyidőben működő teherfajtásból származik, a biztonsági tényező

a rendeltetési tényező, melynek értéke — ha a KPM másképp nem rendelkezik — 1.1

A mértékelő igénybevételek megállapításánál a 2. pontban felsorolt terhelő erőkből és mozgásokból származó igénybevételként csak a terhelő erő és mozgások valóságosan lehetséges csoportosításában szabad számítani az igénybevételket együttest szabad figyelembe venni. (!)

3.2.2 Késztő hídfeszülések mértékedésénél a fáradásra általában nem kell figyelemmel lenni, azonban különleges esetekben (pl. közúti-vasúti terhelés akcióerőkkel hídfak vagy konzervatív) a fáradás figyelembevételének esetekhez, ha a 3.2.1 pont szerinti mértékelő igénybevétel elérte gyakran változhat, és az anyag fáradásának veszélye fennáll, a mértékelő igénybevétel az 1. képlet helyett az

\[Y_n = e^{\gamma \sum Y_x + n \Sigma Y_x} \]
(2)

képletben kell kiszámítani. E képletben y az anyag fáradásra jellemző szorzó, amelynek értéke a szabvány

további fejezett tartalmazási utasításait.

4. AZ ÁLLÉKONYASÁG IGÁZOLÁSA

A híd legyen állékonyság, vagyis a hídak, ill. egyes szerkezeti elemek méretei és elrendezésének igazolását úgy kell megállapítani, hogy a híd a 2. pontban felsorolt terhelő erők és mozgásokra felbontott, kifejezett, előlépési vagy elosztással szemben biztonságos legyen. E követelmény teljesítése céljából igazolni kell, hogy

\[\sum Y_x + n \Sigma Y_x = 0.8 \sum Y_x \]
(3)

mely képletben

\[\sum Y_x \]
(2.1) pontban felsorolt állandó, ill. tartó jellegű terhelő erőkből és mozgásokból a kedvezőedésen szártási tényező figyelembevételével számított felbontott nyomaték, ill. elosztászáró erő;

\[\sum Y_x \]
(2.2) pontban felsorolt esetleges jellegű terhelőből (a hasznos teher dinamikus tényezővel szorosra) a kedvezőedésen szálló értékektől számított felbontott nyomaték, ill. elosztászáró erő;

\[\sum Y_x \]
(2.3) pontban felsorolt állandó, ill. tartó jellegű terhelő erőkből és mozgásokból (általában esetleges terhek nélkül), a kedvezőedésen szártási tényező figyelembevételével számított felbontott, előlépési, ill. elosztászáró nyomaték, ill. ellenértő erő;

\[n \]
(3.2.1 pont) szerinti biztonsági tényező.
C.
ALÉPÍTMÉNYEK
I. TALAJFELTÁRÁS

A talajfeltárást — beleértve a talajvíz-viszonyok feltérképezését — általában az MNOSZ 4488 ill. MNOSZ 15 001 R-ben foglaltak szerint kell végezni.

Hidrofófia műterügyek alapozási terveinek elkészítéséhez minden esetben kell talajfeltárást végezni.

A talajfeltárás vagy a talajrétegződés egyszerű megállapítására szolgál, vagy részletes talajvizsgálat céljára történik, a műterügy jellegétől és fesztivális igénytől függően, az alábbiak szerint.

1.1 30 m-nél kisebb összhosszúságú műterügyek alapozási terveinek elkészítéséhez általában elég a talajrétegződés egyszerű megállapítására szolgáló talajfeltárás és ennek alapján a talajrétegződés személyes útján történő megállapítás.

Ha a hőszervitamin támaszmegoldára érkezünk (általában a szellőzés előtt vagy a hideghűtés után), vagy ha a pillérek ill. hőfok magassága nagyobb, mint 60 m, vagy ha az alatt elszínelt útján az MNOSZ 15 002 R szabványban felületes alakú talajterületekkel nem azonosítható vagy ha a talajrétegek minősége szempontjából különböző maradnak fel, továbbá, ha a talaj már személyes útján kedvezőtlennek bizonyul,

akkor a talajrétegződés egyszerű megállapítására szolgáló talajfeltárás alapján talajmechanikai azonosítás és állapotmeghatározásra is alkalmas laboratóriumi vizsgálatokat kell végezni, s a talajrétegződés ennek alapján megállapítható.

Ha a vizsgálatok alapján a talajviszonyok bizonytalan vannak vagy kedvezőtlennek bizonyulnak, akkor a tervezés vagy a talajmechanikai szakértő kiválasztásra a részletes talajmechanikai vizsgálat céljára történő talajfeltárás is végre kell hajtani, és részletes talajmechanikai szakvéleményt kell készíteni.

1.2 30–60 m hosszúságú esetében a talajrétegződés egyszerű megállapítására szolgáló talajfeltárás alapján az egyszerű talajmechanikai azonosító és állapot-meghatározásra is alkalmas laboratóriumi vizsgálatokat mindenkor végre kell hajtani, s a talajrétegződést ennek alapján megállapítható.

Ha a szerkezet támaszmegoldásra érkezik, vagy az előző bekerületben foglalt vizsgálat kedvezőtlen talajviszonyokat talál fel, akkor részletes talajvizsgálat céljára történő talajfeltárásra kell végezni, és részletes talajmechanikai szakvéleményt kell készíteni.

1.3 60 m-nél nagyobb összhosszúságú hidak esetében minden esetben részletes talajvizsgálat céljára történő talajfeltárásra kell végezni, és részletes talajmechanikai szakvéleményt kell készíteni.

1.4 A talajvíz vizsgálat a fesztivális időben függetlenül minden esetben végre kell hajtania, kivéve, ha a talajvíz nem agresszív voltak kétséget kizáró módon igazolva van (pl. közében fekvő talajvizek vizsgálati eredményei alapján.)

* A talajvíz öntetőztetésre, továbbá az agresszív víz elleni védekezésre az építőipari Minisztérium MÉ–19–54 sz. intézés alapján.
2. AZ ERŐTANI SZÁMÍTÁS SORÁN FIGYELEMBE VEENDŐ TERHELŐ ERŐK ÉS GAZÓK: ALKALVÁLTÁZÓ JELLEMZŐK

Az alapeltények erőtani számítására a B. fejezetben foglalt általános előírásokon és az építőanyagok
választechnika és a számítási módszerek szerint kerül sorozatosan a MNOSZ 15002 R 2-ában
írt előírásokhoz. A táblázatokban alkalmazott értékek és táblázatokat a MNOSZ 15002 R 2-
ból származtathatjuk.

2.1 A földnyomás hatására elmozdonul, nem tudunk szerezni a felhasználóként, hogy ilyen esetleges
figyelembe vevői az állások

2.2 A földnyomás kinőtődése után a földnyomás megbüntetése során a módszerekban követendő lépések és az
különleges terhelésre késztetett, hogy ilyen esetben megfelelően hasznosítsa az ablakozott és az

2.3 A csatorna vagy a csatorna elektromésző közötti átmenet minimális hatású

2.4 A csatorna megfelelően elhelyezett és az elektromésző közötti átmenet minimális hatású

2.5 A csatornák kétlen elhelyezése után a különleges terhelésekre készülő erők és ellenállásoknak

2.6 A földnyomás nagysága és az elektromésző közötti átmenet minimális hatású

2.7 A csatornák kétlen elhelyezése után a különleges terhelésekre készülő erők és ellenállásoknak

3. AZ ERŐTANI SZÁMÍTÁS SORÁN FIGYELEMBE VEENDŐ MÉRETÉK ÉS FELETEVEK

Az alapeltények erőtani számítása során (teherérvés és az ellenképesség igénylés, valamint a várható
súlyok megbüntetése során) a vonásforrás fejezetekben és a MNOSZ 15002 R-ben foglaltak szerint kell
őrni.

A hátrányosan erős elhelyezés, az ötletes súlyok megbüntetése során a vonásforrás fejezetekben és a
átmenet minimális hatású

A csatornák kétlen elhelyezése után a különleges terhelésekre készülő erők és ellenállásoknak

A csatornák kétlen elhelyezése után a különleges terhelésekre készülő erők és ellenállásoknak
A játékos felülett isma legyen, melyből még csavarjuk az állítnak ki. A játékos felületét célzók értesített szövegfejekkel burkolni.

A játékos végződésének hallgatja a várható jég vastagságtól és sebességtől függően 1,5-2,0 méterrel a leghangsúlyosabb jeges vonal eltérését figyelje meg. A vágóé megfelelően 0,5 cm-rel a legalacsonyabb vízállás alatt kezdődik és 1,5-2,0 cm-rel a legmagasabb jeges árva szintje felett végződik. A vágóé helyes hosszában színesítővel kell burkolni.

4.4 Nagy kiterjedésű létesítmények alapjai és felmerő fázisuk célzók legalább 20 méterenként illatosítás hőzággal megosszását. Elmozdulati hőzátra kell létrehozni továbbá az alapelepeken, ill. a felmerő falon ott is, ahol a talaj rétegbeadása vagy az alapok terhelése ugráltserően változik.

A híd felmerő fázisainál hosszabb, rámzfalazásban kialakított szárnyfalak, ill. csatornázó dámok és ahol alapjai a híd oldal felmerő fázisainál és alapjainál elmozdulati hőzátra kell elválasztani. Kisebb, közös alapjainkohelyezett hídok és szárnyfalak az elmozdulású hőzég elhagyható.

4.5 A LÁNCPRÉZDÉZÉS megakadályozása céljából különös gondot kell fordítani a hídóhöz csatolható töltés alatt talajrétegekre és alapjainál elmozdulati hőzátra (pl. kedvező, talajvíznyomás esetében talajtömörítés, talajajtás vagy talajválasz). Annak érdekében, hogy a hídóhoz terhelte a talaj korszakot képező a hídok megépítése előtt jósolják le, célszerű a földmunkát a hídóhoz közvetlenül csatlakozó hatótáv kivételével — a hídóhoz közvetlenül csatlakozó hatótáv kivételével —

4.6 A hídó és a szárnyfalak működése a hőzélső forduléshasználtság szempontjából mértéktéko eltávolítható részének vízszintellenőrzését a beállított csapások elválasztására kötött koldókra kell, rehelyezze az épületet a vízszinten.

Ennek érdekében célzóhíd az hídó és a szárnyfalak töltése alatt érvényes lehetővé körbe körbe, vagy pedig legalább 30 cm vastag, érdemesleg, lehetőség szerint a szárnyfalkatokban elhajított körfűrészletet (gyors, hamis, homokos kavics vagy apró kavics) készített szárnyvíz rátevő sorozatban. Ennek vízszintellenőrzését a vízszintre keresztülve néhány másodperc múlásával készíthető, hogy a vízpályán belül lehessen jól észlelnie, hogy az adott helyzetről fokozatosan fokozatosan kezdődik az elhagyható.

Ha a hídóhoz csatolható töltése esetében vissza hagyható a hídóhoz közvetlenül csatlakozó hatótáv kivételével — a hídóhoz közvetlenül csatlakozó hatótáv kivételével —

4.7 A hídó és a szárnyfalak működési híztörés közéletlen jól támogatható, a szárnyfalakat egyformán, elhajított körfűrészletben 20-25 cm vastag vízszintes rétegeket kell előírni. Ennek körüli kiszűrésével fel kell kíváni a figyelni arra is, hogy a helyzeten történő törődés közvetlenül esetében (pl. függő szárnyfalak közvetlen kiszűrő) a szerkezet épületét veszélyeztetheti.

4.8 Pöttöredő hídcserekeszek részének figyelése alatt lenni a kifogyás és a korláttal védelemre.

4.9 A hídók mögötti üléspontok legalább a teljesítménység miatt mélyebb országos célzóként könnyen bontatható burkolattal tervezve, hogy az a töltésügyidejeket jellassodás után könnyen kijavítható leegyen.
Ez a fejezet minden közötti acél hídszerkezeteket vonzókézik, de hiteletesség szél hídszerkezetek ill. szegélyed idők egyes hiteletesség szerkezeti részeinek tervezése során az F. fejezet előírásait is be kell tartani.

I. ANYAGOK

1.1 Hongvetett anyag (lemez, idomacél)
Közötti hídszerkezetek hongérekt (idomacél, lemez) anyaga általában a IV. táblázatban megadott minőségi acél lehet.

Ezekben a kiváló szegélyed, szerkezeteknél is alkalmazható az MNOSZ 6289 A szerinti 36.24 S jelű folyosóval ill. az 50.35 S jelű nagyszállási acél. (Az S jelölés az anyag hiteletességét jelenti.)

Általánosan jelentős szerepeket lehetséges pl. korlátt, elválasztó szegélyed, víznyelő az MNOSZ 112 szerinti A 50.12 jelű vagy ezzel legalább egyenértékű egyéb anyag is használható.

1.2 Szegélyek és csavarok
Szegélyek és csavarok az V. táblázatban megadott minőségi acél lehet.

1.3 Sarok és csavarkóz
Sarokok, csavarnyomó és egyes különleges szerkezetekhez a VI. táblázatban megadott minőségi acélanyagok használhatók.

A VI. táblázatban feltüntetett anyagokon kívül a IV. táblázatban feltüntetett hibaszállási anyagok is használhatóak.

Öntözéses anyagok új szerkezethez hozzáállása általában nem szükséges. Ha van, akkor felhasználás kivételével eszközökben megfelelő elkerülhetetlen. Tekintetében az az MNOSZ 2591 szeintőtől 22 minőségét kell elérni.

1.4 Különleges anyagok

Az 1.1.1, 1.2 és 1.3 pontban előírtakból kivételével mindkét minőségi anyagok pl. az MNOSZ 21 szerinti A 49.29.21 ill. az MNOSZ 112 szerinti A 49.29.12 jelű szegélyek csak a KPM alatt elérhetők. Végül hozzáállás utalható a 25891-ben a KPM engedélyéhez van közöle.

1.5 Minőségi vizsgálatok
Közötti hídszerkezetekhez csak a megrendelő által a hengerütemben minősítők érvényes anyagok szabad felhasználni. A megrendelőknek megválasztására a hengerütemben az MNOSZ 103-ban, az MNOSZ 105-ben (11, 4, 9, 16, 15, 16, 20. lapok), valamint az MNOSZ 15141-ben előírtak mérsékelődik. Különleges vizsgálatokra vonatkozóan ezenként a MNOSZ 15141-ben is be kell tartani.

<table>
<thead>
<tr>
<th>IV. táblázat</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEGNEVEZÉSE</td>
</tr>
<tr>
<td>Folyosó</td>
</tr>
<tr>
<td>Nagyszállási acél</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V. táblázat</th>
</tr>
</thead>
<tbody>
<tr>
<td>A szervény anyag</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>MNOSZ 113</td>
</tr>
<tr>
<td>Folyosó</td>
</tr>
<tr>
<td>Nagyszállási acél</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VI. táblázat</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAGNEVEZÉSE</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Acélkeverék</td>
</tr>
<tr>
<td>MNOSZ 3591</td>
</tr>
<tr>
<td>Korcskóz szélő</td>
</tr>
<tr>
<td>3-as lap</td>
</tr>
</tbody>
</table>
2. AZ ERŐTANI SZÁMÍTÁS SORÁN FIGYELEMBE VEENŐ TERHELŐ ERŐK ÉS MOZGÁSOK; ALKAVÁLTOZÁSI JELLEMZŐK

<table>
<thead>
<tr>
<th>VII. táblázat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Az anyag nagyságura</td>
</tr>
<tr>
<td>kg/m³</td>
</tr>
<tr>
<td>Adalély általános</td>
</tr>
<tr>
<td>Keretvessza</td>
</tr>
<tr>
<td>Öntétes</td>
</tr>
</tbody>
</table>

2.1 A közút-i főiparosok érdekei számítása során figyelembe vévenő terhelő erők és mozgásokra a 2. pontból adott számításból a 7. táblázatban megadott értékekkel kell figyelembe venni.

2.2 Az alkaváltozások meghatározása során a víztartalmú anyagok regulációs és nélküli régulációs titán váltalatai azonosítása során hasznos következtétek: a víz tartalma, amelyet a keretvessz az 110 kg/m³, az öntétes 140 kg/m³.

3. AZ ERŐTANI SZÁMÍTÁS SORÁN FIGYELEMBE VEENŐ MÉRÉTEK ÉS FELELVESEK

A B. fejezetben fogalkozott általános előírásokon felül még az alábbiakat mérésre:

3.1 TÁMASZKÖZ

A főiparok támaszkodó általános szerv vagy csökkentések közvetlenül a főiparok engedélyezési követelményeit való mértéken. A hozzáfűzetek támaszkodó az a tőlélés, amelyet a következőképpen a méréshez igénybevételre és a számításoknak meghatározására.

3.2 A KERESZTMTÉSZET MÉRÉTE

A tartó alkaváltozásának meghatározását — valamint a szintaktikai hatásokat szerzések mértékként igénybevélésének meghatározását is — a teljes keretmérészet függvényével kell végrehajtani.

A határozottból a keretszerkezet az alkaváltozásokat megfelelően kell meghatározni. A keretmérészet megfelelően kell meghatározni.

3.2.1 Központos húzás esetén az Fs, hasznos keretmérészetet terület meghatározására során a vízgátás (mértékadó) keretmérészetben levő valamivel gyengített, így az összes csavar-, csavarr-ill. táskulysíkot itt kell vonni. Ha a szüneteltetés az általános szerv közvetlenül a főiparok engedélyezési követelményeit való mértéken és a kifogásított csavarokat az összes csavarodásokat keretmérészetben levő táskulysíkokat.

3.2.2 Központos nyomás esetén az hasznos keretmérészetet — azután függően, hogy a vízgátás a főipar keretmérészetének, a táskulysíkok az összes csavarodásokat keretmérészetben.

A főipar keretmérészetében levő táskulysíkokat a vízgátás közvetlenül a főipar keretmérészetben levő táskulysíkokat.

A keretmérészetben levő táskulysíkokat a vízgátás közvetlenül a főipar keretmérészetben levő táskulysíkokat.

A keretmérészetben levő táskulysíkokat a vízgátás közvetlenül a főipar keretmérészetben levő táskulysíkokat.

A keretmérészetben levő táskulysíkokat a vízgátás közvetlenül a főipar keretmérészetben levő táskulysíkokat.

3.2.3 Központos szerkezet és kifizető szereplők az összes csavarodásokat keretmérészetben levő táskulysíkokat.

A keretmérészetben levő táskulysíkokat a vízgátás közvetlenül a főipar keretmérészetben levő táskulysíkokat.

A keretmérészetben levő táskulysíkokat a vízgátás közvetlenül a főipar keretmérészetben levő táskulysíkokat.

A keretmérészetben levő táskulysíkokat a vízgátás közvetlenül a főipar keretmérészetben levő táskulysíkokat.
3.5 TARTÓCÉK

Többfősorú hidak, melyeknek főfősor megfelelő erősítésre képes keresztszerkezetekként ill. keresztkötésekkel vannak összekötve, tartócékként kell számítani.

3.6 RÁCOS TARTÓK

3.61 Rácos tartók számítása az embeli hálózat alapján kell végrehajtani. Ha a 6,51 ponton foglalt figyelembevételével kialakított tényező változás hálózatban az egymást meszsőt futó súlyonvaló közzé egy pontban találunk, akkor az azzal azonos különállósgával kelebbeke hatások általános elhanyagolható.

Ha a tényező változás a hálózatban az egymást mezcso fő súlyonvaló egy pontban találunk, és a fennálló kilépésú számítások, akkor a 4,51 ponton származó hálózati általános elhanyagolható.

Ha a lépésnyomások az egyes reakciókat, amelyek a tényező változások a számításban felhelyezése, a különleges tényezőknek az alapján kell megmértéke.

3.62 A csomópontok meze változásén belül kelebbeke hálózati általános elhanyagolható, és kevés erősségű számítások a számítások a hálózatok hosszúságának hányszorosa.

3.63 A rév tengelye nem egyszerű, és a rendelkezése az igénybevételi eszköze a körülmény figyelembevételével kell meghatározani.

3.7 SZÍNLÁCAKOS

3.71 A hídfelezőre hozó szállásütemé - ha alul dishatás így van - a szállások között a készülő elejéig készít jövőből megfelelően kell meghatározni.

A járműre hozó szállításból származó vizesítés erőt jellegében a pályaerősítmény és a megfelelően kialakított pályaseboktor mélydugatokat kell feltételezni, a szállításával kelebbeke függőleges töltőerőt is kompatibilis megfelelően kell hárítani.

Ha a szállító okozta vizesítés erőt egyedüül a pályaseboktor veszi fel, akkor legább a szerelő tanulmányokor a külön szállítást is alkalmazni, melyet a 4.17. hídon kívül a rendelkezésre álló információkban.

A nyomott övet vevőfősorok a szállítások teret híd esetén a szállításból ill. újság híd esetén a szállítóhíd keletkezési erőkön kívül, az 4,321 pontról előbb egyidejű T nyiröordóra is méretarányt merézelni kell.

Az ilhaszár a síkság és az ők súlyonvaló közös tövénél és a különálló hálózat elhanyagolható.

A szállítások megszakítását keletkeződő és portált kekelebeket a fenti szállításhoz szállító szállítóhíd, azon elegendő, hogy az egyszerű övet szállítóhíd sorozatú jobb és a szállítások megszakításhoz szükséges.

3.72 Ez a szállításos pólítás tartókként merézetők szükséges, kisbeli jelentőséget jelentenek az alábbi szerkezettől, (pl. gázolajos hidacsk)

3.73 Ez a szállítások lehajlásán az összefolyás alapján - szabad felfekvő készülők tartóként számlálok - ne legyen több elzárós hosszat 1:000 részével.

Ha esetleg az összefolyást keletkező hálózati folytathatatos vagy a lehajlások különállóság hálózatnál számítva, annak hatása a méretezés során figyelembe kell venni és a számlálok a 4,24 pont szerint kell mérestetni.

3.8 SAROK

A sarukat a merézkedő (dinamikus, biztonsági és rendelések tényleg felvett) támaszpontú reakciók

3.9 SAROK

A sarukat a merézkedő (dinamikus, biztonsági és rendelések tényleg felvett) támaszpontú reakciók
\[\sigma_{CH} \] pedig a kihajlott határfeszültség, mely az alábbi képlete szerint számítható:

\[\gamma = \frac{1.6 \times 10^4 \, \text{kg/cm}^2}{\sigma_{CH}} \]

E képletben (a feszültségek mértékegysége kg/cm²):

- \(\sigma_i \) a 4.4 pont szerinti határfeszültség
- \(\gamma \) a 4.221., 4.222. és 4.223. pont szerint meghatározott karcsság

\(\gamma \) pedig az acelluláris minőségtől független, rácso tartó esetében a következő:

folyócsélállás: \(\gamma = 2700 \, \text{kg/cm}^2 \)

agglomerációs acélháló: \(\gamma = 3740 \, \text{kg/cm}^2 \)

A kavar visszahajlástani határfeszültség a folyócsél kihajlott határfeszültségének 0.9-szerese.

Rácsos tartók esetében a fűtés képleteből számítható \(\sigma_{CH} \) a karcsság függvényében folyócsélállás a VIII. nagyelláttozás acélháló pedig a IX. táblázat tartalmazza. Gérinelmezésre terjedt esetében a határfeszültségeket 5%-kal növelni kell.

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1800</td>
<td>1804</td>
<td>1808</td>
<td>1812</td>
<td>1816</td>
<td>1820</td>
<td>1824</td>
<td>1828</td>
<td>1832</td>
</tr>
<tr>
<td>1</td>
<td>1840</td>
<td>1844</td>
<td>1848</td>
<td>1852</td>
<td>1856</td>
<td>1860</td>
<td>1864</td>
<td>1868</td>
<td>1872</td>
</tr>
<tr>
<td>2</td>
<td>1880</td>
<td>1884</td>
<td>1888</td>
<td>1892</td>
<td>1896</td>
<td>1900</td>
<td>1904</td>
<td>1908</td>
<td>1912</td>
</tr>
<tr>
<td>3</td>
<td>1920</td>
<td>1924</td>
<td>1928</td>
<td>1932</td>
<td>1936</td>
<td>1940</td>
<td>1944</td>
<td>1948</td>
<td>1952</td>
</tr>
</tbody>
</table>

VIII. táblázat

Nyomott rács kihajló határfeszültségei kg/cm²-

A 24.12.31. mindigannyira [kg/cm²-

- \(\lambda \) a 4.4 pont szerinti kihajló határfeszültség

Nézd meg a 4.44 pontot is.

a) Rácsos tartó övördjénak kihajló hossza

A tartó sikkjainak valóban kihajló hossza a szomszédsági csomópontok előtti szakasz.

A tartó sikkjának meredekség irányú kihajlásra:

Záró hidak vagy hídrézek esetében a kihajló hossz a tartó síkjának meredekség irányában megfelelő pontok távolsága.

A tartó síkjának meredekség irányában megfelelő pontok távolsága, ilyeneknek tekintendő azok a pontok, amelyekhez végzett keresztmetszet, 0.9-szerese.

Ferde kapucsnak azon rövidítéknél, amelyek egyben övördok is, a tartó síkjának meredekség irányú kihajlásra a b) pont előírásai szerint kell számíthatni.

b) Rácsos tartó ösziplanknak és összekötő rúdjainak kihajló hossza

A tartó sikkjainak valóban kihajló hossza a tartó szakaszainak összekötő síkjának meredekség irányú ösziplanknál, 0.9-szerese.

A tartó síkjának meredekség irányú kihajlásra:

Záró hidak vagy hídrézek esetében a kihajló hossz

\(\lambda = \lambda / \lambda \), ahol a tartó síkjának meredekség irányában megfelelő pont távolsága.

A tartó síkjainak meredekség irányú ösziplanknál, 0.9-szerese.
Ezenkívül a rodát az öv merevségének figyelembevételével a 4.322 pont szerint is meg kell vizsgálni. Függőleges kapcszat tagolt alkorló oszlopok és összekötő rodák ill. ferde síkú kapuszat tagolt alkorló övóvodak esetében a kijárási hossz a kapuszat szerkezet keletkezéséig függ és az ezen eseményt kell meghatározni. A kapuszat alatt olyan keretrendszeret kell érteni, melynek feladata az erős kő felől származó sérüléseken az alsó szélszorosra vagy a sarra átvinni.

Ilyen rodát esetben a kijárási hossz — ha pontosabb számítás nem készült — a rúdra rajzol nyomásépítményi ábra 0 pontja és a tőle mérsékelt eső nyomásszint maximális helye közötti távolság készülésére felhet felvenni, vagyis $L = 2a$ (14. ábra).

K-alakú rögzítő oszlopú az alkorló hossza a ferde rodakkal közös csomópont és a röd elméleti vég-pontja közötti távolság 1,2-szerese.

c) Rögzítő tartó ferde rögzítődőn a kijárási hossz

Egyéb rögzítő esetében a kijárási hossz:

A tartó aljzatban való kijárást a röd elméleti hossznak a 0,8-szerese.

A tartó aljzat meredclus irányú kijárást pedig a röd elméleti hossza.

Késztesor rögzítés esetében:

A tartó aljzatban való kijárást a kijárási hossz a rudak keresztkezdési pontja és végpontja közötti távolságba a keresztkezdő rudak egymáshoz való keresztkezdésig az erős kő felől származó sérüléseken az alsó szélszorosra vagy a sarra átvinni.

Több részben összekötő szelvény esetében mindig rész külön kell fentieknek megfelelően kapcsolni.

Ha e félleknek a kijelölése nincsenek — és pontosabb számítás nem készült — a kijárási hossz-szám az röd övek közötti elmozdulás hosszának a 0,8-szereseire kell felvenni, de az ezen a nyomott röd szelvényének meredecsként a keresztkezdés helyen szükséges az összekötő a kijárási hosszát.

A tartó aljzat meredclus irányú kijárást a kijárási hossz a rudak keresztkezdési pontja és végpontja közötti távolság, feltéve, hogy az alsó felsorolt összekötő félleken.

A keresztkezdési pont mindkét röd hosszát felel, (Az ezen a nyomott rudat keresztkezdő röd hossz, és a két röde röge közötti elmozdulás.) A hosszú röd a keresztkezdési ponthoz a röd hosszot a kijárási hosszot a röd elmesél és eljárás, a röd hosszot a kijárási hosszot felel. (Az ezen a nyomott rudat keresztkezdő röd hossz, és a két röde röge közötti elmozdulás.)

Ha e félleknek a kijelölése nincsenek — és pontosabb számítás nem készült — a kijárási hossz-szám az röd övek közötti elmozdulás hosszának a 0,8-szereseire kell felvenni, de az ezen a nyomott röd szelvényének meredecsként a keresztkezdés helyen szükséges az összekötő a kijárási hosszát.

Készletes szerkezetek:

Késztesor rögzítés esetében:

Az ezen a nyomott rudat visszavezetési aljzatot állítóval esetén az irányító egység kijárási hosszát a kijárási hossz 1,2-szerese.

Késztesor rögzítés esetében:

A tartó aljzatban való kijárást a röd elméleti hossznak a 0,8-szerese.

A tartó aljzat meredclus irányú kijárást pedig a röd elméleti hossza.

<table>
<thead>
<tr>
<th>Az t/l</th>
<th>0,05</th>
<th>0,20</th>
<th>0,30</th>
<th>0,40</th>
<th>0,50</th>
</tr>
</thead>
<tbody>
<tr>
<td>hűrcsakkő</td>
<td>1,20</td>
<td>1,26</td>
<td>1,33</td>
<td>1,39</td>
<td>1,52</td>
</tr>
<tr>
<td>kétszakú</td>
<td>1,09</td>
<td>1,06</td>
<td>1,13</td>
<td>1,19</td>
<td>1,25</td>
</tr>
<tr>
<td>beforgat</td>
<td>0,70</td>
<td>0,72</td>
<td>0,74</td>
<td>0,75</td>
<td>0,76</td>
</tr>
</tbody>
</table>

Bemutatkozás

Késztesor rögzítés esetében:

A tartó aljzatban való kijárást a röd elméleti hossznak a 0,8-szerese.

A tartó aljzat meredclus irányú kijárást pedig a röd elméleti hossza.
4.222 Állandó keresztmetszetű osztott szelvénnyű rudak

a) A szelvénny méretezése
Két különböző tömér részből rögzítőkába vagy összekötő keresztknél összekapcsolt (osztott szelvénnyő) röd karcsúsítás az anyagi tengelyre (16. ábra x=x) merőleges kihajlás vizsgálat során a 4.221 pont szerint. A szabálytengelyre (16. ábra y=y) merőleges kihajlás vizsgálat során pedig az sékkből szerint kell megalapozni:

Az osztott szelvénnyő röd, ha a rögzítő, ill. hevederező a b) pontban előírás szerint van méterezve

l₁ = (Sₚ + 1 000) / λₚ

Ideális karcsúsítási tömör szelvénnyő rödélhelyettesítésére. A képletben λₚ a teljes röd karcsúsítása a szabálytengelyre merőleges irányban, amelyet a 4.221 pont szerint megállapított kihajlati hossz és a teljes rödélhelyettesítési irányban mért elektromosnak segítségével alapján kell meghatározni. Tervezésnél az alsóbbak szerint kell eljarni.

A rödnek legkisebb karcúsitása (λₚ = lₚ / lₚ₀) 16. és 17. ábra) lehetőleg egyenlő legyen a

lₚ₀ ≥ 0,8 lₚ

b) A rödnek legkisebb karcúsitása λₚ ≤ 0,4 legyen.

γ) Rögzítőkából osztottkába szelvénnyő, rombusz rendszerű vagy kétzeres rögzítőt kell alkalmazni. Mindehárom rögzítő menedzet jobboldali és baloldali is tervezhető. (Lásd egyébként b) pontról a bekezdés.)

Olyan 4 elemából összeállított osztott szelvénnyő rudaknál, amelyeknek két különböző elem között szakaszos bélelemes van, a bélelemes szélő tengely (18. ábra) anyagi tengelyek tekintetében, feltéve, hogy a két elem olyan sűrűn van egymáshoz kapcsolva, hogy az egyes elemek karcsúsítása λₚ ≤ 0,16. Az ilyen rudak két különböző részből állókat tekintetében és fentiek szerint mértékezhetők.

Kettőnél több részből összeállított szelvénny változatát általában kezelheti. Ha ilyen szelvénnyő röd szerszámításhoz nem kerülhető el, a négy részből összeállított röd esetében az ideális karcsúsítást

λₚ = (0.5 lₚ + 2 000) / lₚ₀

γ) feltételezve az

lₚ₀ ≥ 0,8 lₚ

Ha ez a feltétel nincs kielégítő (pl. olyan rudaknál, ahol a hasznos nem méretlán), de nyomóigénybevevőként is kelekedik, vagy néha hibásan, a legkisebb ideális karcsúsítás megállapítására szolgáló képletben λₚ ideális értékeket kell számolni.

γ) Rögzítőkából osztottkába szelvénnyő, rombusz rendszerű vagy kétzeres rögzítőt kell alkalmazni. Mindehárom rögzítő menedzet jobboldali és baloldali is tervezhető. (Lásd egyébként b) pontról a bekezdés.)

Ha az osztott keresztmetszet egyes részének összekötésére kettős vagy rombusz rögzítőt szolgál, és ennek a rögzítésénél a rögzítőmenedzet merőleges szerkezetére adott az osztottkából és kapcsolatának méretmérést a belső képben érvényes hatáskörzetszélességnek csak a fölét szabad alapul venni.

4.223 Választó keresztmetszetű nyomozt rudak határigénybevétele a legkisebb keresztmetszetnek (mint állandó keresztmetszetnek) megfelelő határ-igénybevételekből nagyobb értékekkel csak akkor vehető számításba, ha ennek hasznos igénye is igazolva van.

4.23 Hajítás

Hajítás esetében a határigénybevételek az

Mₜₜₜ = Kₜₜₜ σₜₜₜ

képlet alapján számítható, ahol Kₜₜₜ a 3.23 pont szerint meghatározott hasznos keresztmetszet tényező, σₜₜₜ pedig a 4.4 pont szerinti hajítási határfeszültség.

4.24 Húzással, ill. nyomással egyidejű hajítás

4.241 Központos húzással és hajítással egyidejű legigénybevett rödből a húzással és hajítással megmunkált szelvénnyő részek feszültség üteme nem lehet nagyobb mint a határfeszültség:

σₜₜₜ + σₜₜₜ = σₜₜₜ

Pontosabb számítás esetében a húzóerejek az alvóalakzatok kapcsolatos nyomáskészletenként hatását figyelembe lehet venni. 4.242 Központos nyomozással és az egyik fő tengely irányában a hajítással egyidejű legigénybevett röd méretezésénél az alsóbbak szerint kell eljarni.
A szelvény megfelel, ha az alábbi egyenlőtlenségek kielégítőek):

\[\begin{align*}
\lambda_1 & = 10,000,000 \quad \sigma_0 - \sigma_1 - \sigma_m \leq 0 \\
\lambda_2 & = 10,000,000 \quad \sigma_0 - \sigma_1 + (\gamma - 1) \sigma_m
\end{align*}\]

Fenti képletben:

\[\lambda_1, \lambda_2, \text{ a hajlítás síkjára, III. az arra merőleges irányra vonatkozó és a } 4.22 \text{ pont szerint megállapított kovácsoló.}\]

\[\sigma_0, \text{ az adányanyag } 4.4 \text{ pont szerinti, nyomásra vonatkozó határfelelőssége.}\]

\[\sigma_1 = P / P \text{ az általános nyomáson származó határfelelőssége} \text{ kg/cm}^2 \text{ egységben.}\]

\[\sigma_m \text{ az egyidejű hajlítónyomék tekintetében a nyomozó szelői szállítás szállításossága} \text{ kg/cm}^2 \text{ egységben.}\]

\[\gamma \text{ jelentése a következő: a nyomóerdő egymással felfelé hajlítónyométek elosztódált idéz elő, ennek következtében a csonkolt normális } 2 \text{ tartón hajlítónyométek elosztott, } \sigma, \text{ az ébbről származó szelői nyomot szállításossága. (A nyomóerdők az elosztódást néhány további hatása éli: eltávolítás, változás, s. o.)}\]

XIII. táblázat

<table>
<thead>
<tr>
<th>Tabulák</th>
<th>(P)</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.028</td>
<td>0.822</td>
<td></td>
</tr>
<tr>
<td>1.234</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.28 Szegések, csovak, csapok

Szegések, csovak és csapok nyírásra, palástozókra, továbbá az esetleges tengelyirányú húzáshoz és hajlításra vonatkozó határfelelősségeket a 4.24 pontban meghatározták azonos kovácsolás és a 4.4 pont táblázatban megadott határfelelősségek alapján az alábbiak figyelembevételével kell meghatározni.

Szegések vagy csovak egyidejű, nyíráshoz és húzáshoz vannak igénybe vétő és a felesleges határfelelőssége külön döntő nemkés être - a nyírásra és palástozókra megadott határfelelősségeket 30%-kal csökkenteni kell.

A szerkezet anyagának palástozóra vonatkozó határfelelőssége kisebb, mint a szegéscsappal, akkor a szerkezet anyagának palástozókra vonatkozó határfelelőssége kell számításba venni.

4.31Gerincvelétes tartók

Hajlításra, III. azonos egyidejű húzáshoz vagy nyomásra igénybeveve gerincvelétes tartók 4.22, III. 4.24 pontban meghatároztak szerint kell mérésen.

Hajlított gerincvelétes tartók vizsgálata során még az alábbiakra kell figyelemmel lenni:

4.311 Nyírás

Hajlított gerincvelétes tartók gerincvelétesen felülről nyíráshoz és húzáshoz vonatkozó határfelelősségek a 4.24 pontban megadott nyírásra vonatkozó határfelelősségek

Az özvaegységekben írt nyírásra vonatkozó ezekben az esetekben nem léphetik tudja a 3.24, III. 4.4 pontok figyelembevételével számított határfelelősségeket.

E vizsgálat során figyelemmel kell lenni az összetett erősítő hatásokra is, például a gerincvelétes keretekhez felső évre felfordított hossztartókat.

4.312 Horpadás

Hajlított gerincvelétes tartó gerincvelétesen általában és a horpadásra is meg kell vizsgálni.

20. ábra

b) Az adágmentes a cm-ben mért - vászgáta

\[a = 1.0 \pm 0.1 a \cdot b \cdot 0.55 \pm 0.1 a \cdot b \cdot 1.35 \]

21. ábra

E képeken az a, b a támaszpontok mellett, értéke a, b értéke a 20. és 21. ábra szerint. E mértékeket a gerincveléteseknek veszélyességétől alakíthatja a gerincvelétes. A tágasozott szerkezete kiságos, illetve a mellesleges tartásokat és kereteket a szerkezet méretei. Környezetben kell helyezetbe vonni.
D. Adélszerkezetek

Ha a vizsgálat nem mellékhessé, és pontosabb számítás nem közzel - a gerinclemez horpadasára törődő vizsgálat az alábbiak szerint végezhető.

Az ővek, valamint a függőleges és esetleges visszatérés mértéke által körülfogott deviések ménszigetének megjelenése közel kölzön a legnagyobb erőd és a legnagyobb nyomaték helyén levő mezőket kell megvizsgálni. A vizsgálatot azonban a helyeken is ki kell végezni, ahol a gerinclemezek számítása venni a magassága vagy a váratlanul változó.

A legnagyobb erőd helyén levő mezőnél a legnagyobb erődő (Rmax) egyidejűleg keletkező nyomatékot eredetie (k) kell meghatároznia. E számításoknál a dinamikus, a biztonsági és a rendeltetési tényleges figyelmeztetés venni.

A gerinclemez akkor megfelelő, ha az alábbi horpadasági és folyadéfaktorok is vannak elégre:

Horpadás: A felszín vizsgálat során Mmax, Mf és Rmax, Rf egybevől és közvetlenül — minthogy ez egy mező mentén is meghatározott kisebbség, mint a vonalkifejezések számítása venni. Ha azonban az általános kisebbség, mint a vonalkifejezések számítása közel kölzi, olyan esetekben kell magasabbra tükrözni, hogy a horpadasára meghatározott nyiroköt egyenletesen elosztva a k, illetve a k + b magassági gerinclemezezat vezető felét, tehát

\[\frac{1}{\nu} = \left(\frac{\sigma_{\text{max}}}{\sigma_0} + \frac{\nu}{\nu_{\text{th}}} \right) \leq 1,0 \]

Legyen.

II. képletben

\[\sigma = R \]

\[R = (b + 2h) \]

\[\sigma_{\text{max}} \] a nyilás nélküli hatásra vonatkozó horpadás határfeszültség, amelyet

\[\sigma_{\text{max}} = \frac{\sigma_0}{\sqrt{2}} \]

képletből, és

\[\sigma_{\text{max}} \] a tiszta nyílásra vonatkozó horpadás határfeszültség, amelyet

\[\sigma_{\text{max}} = \frac{\sigma_0}{\sqrt{3}} \]

képletből kell meghatározni. E képletben b, illetve h az \(a = 2b \) viszonytól függő tényező, amelynek értéke a XIV. táblázatból vehető. A k beállítására szolgáló \(y \) mennyiséget értelmez a 21. ábra tüntetett fel. \(\sigma_0 \) pedig az 1 cm széles lemezénak:

\[\sigma_0 = 1500 \text{ kg/cm}^2 \]

E képletben számított Euler-féle kritikus feszültséget jelenti kg/cm²-ban.

A horpadasága kapcsolatos folyadéfaktor felétele:

\[\sigma_{\text{max}} \leq \sigma_{\text{th}} \]

E képletben

\[\sigma_{\text{max}} \leq \nu \]

3. képletben a mezo legkedvezőtlenebb módon égynévessz szálon az ugyanazon helyén egyidejűleg keletkező légkondenzáló feszültségeket jelenti.

4.3.13 Meredekességek. A meredekességek vizsgálata mellékhessé, ha a tartó magassága 1500 mm-nél kisebb, vagy ha a gerinclemez teljes, illetve a 2,5 cm-es teljes magasságban keresztaradó vagy szárnyelem meredest.

Ha a vizsgálat nem mellékhessé, a horpadás számítása nem közzel — az alábbi közvetítő eljárással alkalmazható:

A függőleges meredekességeket nyomott redációkának kell képzelni. A lámas felesleg méretezésével környezőként a tartórész ható meredekesség rekordolódik, minden más helyein pedig egyéneesen azt a meredekességet eredményezhet, ami a támogatás kétségeitől kifolyólagos, mint a meredekesség mértéke.

A meredekesség keresztszemellekeztetés a tulajdonságkénti meredekességek kivitelezése alatt bevezetésével attól is megelőző, hogy a gerinclemez olyan térfogat, mely a meredekesség taktikus hosszantartása megfelelő rész számítástól visszavezethető. A kihajtás hosszat alkalmazásban a gerinclemez teljes magassága. Ha a meredekesség különböző ponton is meg van folyva, a kihajlás hosszat a vonatkozó előírások értelmében alkalmazható lehetővé téthesize.
4.32 Néhány határozott alakításban a teljes keresztmetszeti terület ígyemelkedővá válásával számított nyomott oldali szilárdságfeszültségéhez, mint kéktű és kritikus feszültséghöz, a 4.22 pontban a keretésszervek vonatkozó képlete alapján megállapítható. (Az ilyenkor található táblázatok használata esetében az alábbi említett szilárdságfeszültségek 10%-kal csökkenteni kell.)

4.321 Rácsos hidak oldalirányú mérősevő

A keresztmetszések azonos távolságú kis távolságú párhuzamosan van a távolságban.

A fenti határozott alakításban az oldalláncok vonatkozó mérősevő képlete alapján megállapítható.

A tényleges mérősevő

5.2 E képletben

A sík, a zöld felületen keresztmetszetes oszloplánok a teljes tétesesesség nyomáknak a 24. ábra szerint a y-nyerege.

Változó keresztmetszetes oszloplán esetében az oszlop-

méretesíve szempontjából egyenértékű helyettesíti tehetsé-

nyomókent változásban.
A megtámasztott rövid és annak kapcsolatait grafikusan ábrázolja az 8/100 negyedidő fogyatékos irányú nyomóerőre. Ez az irány a nyomóerő érvényesítéséhez fontos, hogy pontosan meghatározzuk az 8/100 negyedidő fogyatékos irányú nyomóerő arányát.

A megtámasztott rövid és annak kapcsolatait grafikusan ábrázolja az 8/100 negyedidő fogyatékos irányú nyomóerőre. Ez az irány a nyomóerő érvényesítéséhez fontos, hogy pontosan meghatározzuk az 8/100 negyedidő fogyatékos irányú nyomóerő arányát.

Ha a rövid és annak kapcsolatait grafikusan ábrázolja az 8/100 negyedidő fogyatékos irányú nyomóerőre, a megtámasztott rövid és annak kapcsolatait grafikusan ábrázolja az 8/100 negyedidő fogyatékos irányú nyomóerőre. Ez az irány a nyomóerő érvényesítéséhez fontos, hogy pontosan meghatározzuk az 8/100 negyedidő fogyatékos irányú nyomóerő arányát.

4.3.1 Közbevonat ponton rugalmasan megtámasztott nyomott radákat

A megtámasztott rövid és annak kapcsolatait grafikusan ábrázolja az 8/100 negyedidő fogyatékos irányú nyomóerőre. Ez az irány a nyomóerő érvényesítéséhez fontos, hogy pontosan meghatározzuk az 8/100 negyedidő fogyatékos irányú nyomóerő arányát.

Ha a rövid és annak kapcsolatait grafikusan ábrázolja az 8/100 negyedidő fogyatékos irányú nyomóerőre, a megtámasztott rövid és annak kapcsolatait grafikusan ábrázolja az 8/100 negyedidő fogyatékos irányú nyomóerőre. Ez az irány a nyomóerő érvényesítéséhez fontos, hogy pontosan meghatározzuk az 8/100 negyedidő fogyatékos irányú nyomóerő arányát.

A megtámasztott rövid és annak kapcsolatait grafikusan ábrázolja az 8/100 negyedidő fogyatékos irányú nyomóerőre. Ez az irány a nyomóerő érvényesítéséhez fontos, hogy pontosan meghatározzuk az 8/100 negyedidő fogyatékos irányú nyomóerő arányát.

Ha a rövid és annak kapcsolatait grafikusan ábrázolja az 8/100 negyedidő fogyatékos irányú nyomóerőre, a megtámasztott rövid és annak kapcsolatait grafikusan ábrázolja az 8/100 negyedidő fogyatékos irányú nyomóerőre. Ez az irány a nyomóerő érvényesítéséhez fontos, hogy pontosan meghatározzuk az 8/100 negyedidő fogyatékos irányú nyomóerő arányát.
XVII. táblázat

<table>
<thead>
<tr>
<th>Alk.</th>
<th>Haltók és élelmiszerek</th>
<th>Carbohydrolátok (%)</th>
<th>Eredmények</th>
<th>Az alk. / Carbohydrolátor</th>
<th>Az alk. / Carbohydrolátor</th>
</tr>
</thead>
<tbody>
<tr>
<td>As 24.24.12</td>
<td>1800</td>
<td>2400</td>
<td>7500</td>
<td>10000</td>
<td>13500</td>
</tr>
<tr>
<td>As 24.24.12</td>
<td>1800</td>
<td>2400</td>
<td>7500</td>
<td>10000</td>
<td>13500</td>
</tr>
</tbody>
</table>

XVIII. táblázat

<table>
<thead>
<tr>
<th>Alk.</th>
<th>Haltók és élelmiszerek</th>
<th>Carbohydrolátok (%)</th>
<th>Eredmények</th>
<th>Az alk. / Carbohydrolátor</th>
<th>Az alk. / Carbohydrolátor</th>
</tr>
</thead>
<tbody>
<tr>
<td>As 24.24.12</td>
<td>1800</td>
<td>2400</td>
<td>7500</td>
<td>10000</td>
<td>13500</td>
</tr>
<tr>
<td>As 24.24.12</td>
<td>1800</td>
<td>2400</td>
<td>7500</td>
<td>10000</td>
<td>13500</td>
</tr>
</tbody>
</table>

5. AZ ALKALVAZÁLÓSOK ELELENÖRZÉSE

Acél hídtervezetei főként és pályaszárnyak számítása során igazolni kell, hogy a számított lehajlas nem lépi túl a szekézet használhatósága szempontjából megengedett mértékére. Az alakított a teljes keretének alapján a 2.2 pontban előírt megfelelő erősségű vegyes vagy tetőval készíthető.

6. SZEKRESZÉSI SZABÁLYOK

6.1 ÁLTALÁNOS ÉRDEKOSOK

6.1 A tervzés során a gyártás, a szállítás és a szerelés szempontjára minden esetben figyelemmel kell venni.

A gyártásra és szállítási vonatszükség az MNOSZ 15.140 előírással kell rendelkezni. Mindezek költséges előírások, amelyeket a gyártás vagy szerelés alkalmával be kell tartani és amelyek az MNOSZ 15.141-ben nem szerepelnek, a teljesítéshez fontos a tervlevegőtől való kialakításra.

6.2 A kész szerkezet minden részére - beleértve a legcsökkenő cellák és szekrényeket - a megrendezéshez indulásra fog, beleértve a legkisebb cellák és szekrényeket. A gyártás során minden cella és szekrényhez vonatkozó valósítást kell az eladott és illetékeny szerezőknek megfelelően végrehajtani.

6.3 A szerkezeteket úgy kell tervezni, hogy a vizsgálókhoz való érdeklődésre szolgáló részeket lehessen vizsgálni.
6.2.26 A szegcsegélyek távolsága nem lehet nagyobb az alábbi két érdék egyikénél sem (\(e_{\text{min}}\)):

- a) Kapcsoló szegcsegélyek

\[
\text{húzott elem kapcsolatba, erőfeszítében} \quad 6 \text{ d vagy } 12 \text{ e}
\]
\[
\text{nyomott elem kapcsolatba, erőfeszítében} \quad 4 \text{ d vagy } 8 \text{ e}
\]
\[
\text{az elem széléből erőfeszítében} \quad 3 \text{ d vagy } 6 \text{ e}
\]

- b) Fűző szegcsegélyek

\[
\text{húzott rúdakban egymástól} \quad 10 \text{ d vagy } 18 \text{ e}
\]
\[
\text{nyomott rúdakban egymástól} \quad 7 \text{ d vagy } 15 \text{ e}
\]
\[
\text{az elem széléből} \quad 3 \text{ d vagy } 6 \text{ e}
\]

ahol \(d\) a szegcsegélyköv, 2 elem egykölcsön vetési távolsága.

Többosos fűzőszegcsegélynél a szélső sorokban legfeljebb a fentiekhez hasonlóan méretezhető.

6.31 A kapcsoló súlyonla lehetséges egymással megengedett kapcsoló réssz súlyonvalóval.

Ugyanazon kapcsolóban szegcsegélyek, csavarokat ill. varrástokat vehetnek, amelyeket könnyen lehet megfelelően és hatékonyan szállítani. A csavarok és varrástok betét- és megfelelően fordította általános szegcsegély legfeljebb 5 mm-es, lehetőleg ebben az esetben a kapcsoló elem több részét a megfelelő távolsággal enyhébb helyzetbe kell helyezni.

6.32 Kapcsolatok (bekötelezések, illetékességek)

- a) A kapcsoló és az elem között helyezett 5 mm-es és ennél vastagabb betétet a kapcsoló elemen legalább két szegcsegélyt megfelelő távolsággal kell helyezni.

- b) A kapcsoló és az elem között helyezett 5 mm-es és ennél vastagabb betétet a kapcsoló elemen legalább két szegcsegélyt kell helyezni.

Közvetlen vizsgálat esetén a röd súlyonvalóval készített asztalinematikusban előállított többszögleteseket összehasonlító kifejezés helyezésével kell megfontolni.

Pontosabb vizsgálat esetén az asztalinematikusban előállított többszögleteseket összehasonlító kifejezés helyezésével kell megfontolni, de ez esetben a röd súlyonvaló kapcsoló súlyonvalót vezető hajtóműnyomást is számításba kell venni.

- a) legfeljebb 25%-kal csökkenthető a palántyomás úgy, amelyen arányvaló összkéntése meleget.

- b) a) a segcsegély központi helyzetekhez és csavarokra egyaránt vállalható érvényesek.
6.33 Húzott rásorudak beködzését egyenlő teherbírás alaján kell méretezni. Az esetleges kisbóló erőfolyára való tekintettel — ha különböző nagyságú deformáló és mélyítő térfogatokra — a bekötő szegések számára 20%-kal kell növelni, ill. az ennek megfelelő kisbóló megőrzéséhez biztosítani kell.

6.34 Húzott-rásorudat illúziós alakját az egyenlő teherbírás elfordítása alapján kell méretezni.

Ha a bekötés lerövidíthetetlen, a szegések vagy az üveg elhagyott részének pózícióitól való külön bekötése érhető el, akkor a szegések és a pózícióval ellátott részüket is megőrizhetjük. A bekötés pontos meghatározása alapján kell a bekötő szegések számát 20%-kal kell növelni.

6.4 GEINCINELEMEZES TÁRTOK

A gerincinelemesztett kieső átmérői helyeken megtalálhatók. A gerincinelemesztés kiesőként úgy kifejezhető, hogy a gerincinelemesztett alakjaitól számított mértékeket a gerincinelemesztett alakjaitól számított mértékekként kell a bekötő alakjaitól számított mértékeknél kisebbnek kellé, hogy a bekötő alakjaitól kisebb mértéket kérjünk.

6.51 A rácsos tartók ilyenkor akkor megfelelők, ha az átmenő rövidállóvá váló alakjai távolságban megerősítenek. Tehát, ha a rácsos tartó alakjától számított mértékeket az átmenő rövidállóvá váló alakjaitól számított mértékeknél kisebbnek kellé, hogy a bekötő alakjaitól kisebb mértéket kérjünk.

6.55 Zárt szárványú rövidállóvá váló alakjaitól számított mértékeket az átmenő rövidállóvá váló alakjaitól számított mértékeknél kisebbnek kellé, hogy a bekötő alakjaitól kisebb mértéket kérjünk.
A szélászorodás bekövetkezését a méretkérdő rúderőre keljük számítani. Egymást keresztező szélászorodás egyikének a keresztellen pontban törödő megfelelő szelekszobába bekövetkeznél kell tekinteni, tehát a méretkérdő rúderő alapján kell számítani.

Ha különálló pályamenti széláram nincs, akkor gondoskodni kell arról, hogy a pályaképze a széláram felvételére alkalmas legyen és gondoskodni kell a szélérőrnek a sarukra törödő szívójelektározásáról is.

A széláramra vonatkozóban a rácsos tartók szerkezetiével kapcsolatos előírások és érvényesek:

6.8 SARUK

6.8.1 Az álló szaru billenő szerkezeti, a mozgó szaru pedig általában gőzdülő-billenő rendszerő legyen. A mozgó szaru 15 m-nél kisebb támászó esetében csúszó-billenő, 10 m-nél kisebb támászó esetében pedig csúszó szerkezeti lehet.

Gerinclemzés főként hengeres mozgó sarukként lehetőleg egy henger, nagyobb erők esetében, továbbá rácsos főtartóval két hengerből — kivéve esetekben ennél több, de mindig páros számú hengerből — álló hengereszerkezeten kell alkalmazni. Az egyhengeres saruk hengerre teljes körkeresztmetszetű legyen.

6.8.2 Nagyobb kétáramú, valamint különböző határozatok tartók esetében gondoskodni kell arról, hogy a támasszontok a reakció-erők irányában a saruszerkezetek szabályozhatók legyenek.

6.8.3 A saruk felső része és a szerkezet viszonylagos elmozdulásának megakadályozásával gondoskodni kell. Kisebb szerkezetek esetében erről a célra a saruscsavarok is megfelelnek. Nagyobb szerkezeteknél ezt a mozgást — a szerkezetek erről a célra kialakított nyílásként — a saru felső ütővénynék felnyúló részével kell megkötőni.

A saru alacsony része és a felhasznált viszonylagos elmozdulás az alacsony öntvények a betonba való kellő mélyégési beágyazásáról, esetleg szálaszokkal vagy más megfelelő módon kell megkötőni. A sarusöntvény egyenletes felfüvését biztosítani kell.

6.8.4 Saruk elhelyezésére az A. fejezet 4.34 pontjának előírásai érvényesek.
A szegélyt szerkezetekre a D. fejezetben megállapított mintadön előírások, amelyek a hegesztett szerkezetekre vonatkozó különleges előírásokkal ellentétesen nincsenek, értelemserűen a hegesztett szerkezetekre is vonatkoznak.

1. ANYAGOK

1.1 Hegesztett közötti híd szerkezetekhez felhasználható alapanyag általában az MNOSZ 6289 A szerinti 36.24 S jelű folyadék II, 50.35 S jelű nagyszálárdégi acél.

Ezalanyagok kivül csak olyan alapanyagok hozzáíthatók mély, amelyek az MNOSZ 6290 B-ben a hegeszthesősgre előírt feltételeket teljesítik.

Fent alapanyagok sorrendben az MNOSZ 4505 I. által megrendezett az MNOSZ 6289 A-ban megállapított szántartalom nem léphet tovább. Ha a kémiai vizsgálat szerint a maximális vagy azokhoz egészen közel álló szántartalmat mutatja ki, a vizsgálatot az adag (charge) mára részéből vett minőségi készlet meg kell ismertetni. Az anyag az esetben felé meg, ha fent három vizsgálat közül egyik sem mutat ki a maximálisnál nagyobb szántartalmát.

Fentiek előírt minőségű anyagot csak a KPM külön engedélyével és az engedélyben előírt feltételek szerint lehet felhasználni. Ezen engedélynek tanúsítvánnyal kell a hegesztéshez vonatkozó különleges előírásokat is. Kivételt képeznek az alrendelt jelenlétség szerkezetek (korlátozott, elvédő szögcsér stb.), amelyekhez fentiek előírt minőségű — hegesztésre alkalmas — egyéb acélszöveg is elérhető.

1.2 Híd szerkezetekhez, ahol nem használhatók 36.24 S jelű folyadék, az MNOSZ 6281 előírásainak megfelelő E 50 jelű, II. és az alapanyag 50.35 S jelű nagyszálárdégi acél, az MNOSZ 6281 előírásainak megfelelő E 55 minőségű elektroda hozzáítható. Kivételt képeznek a dinamikus igénybevételnek ki nem tett alrendelt jelenlétségi szerkezeti részek, amelyeknél az E 42 minőségű elektroda is használható.

1.3 A minőségű anyagok esetén a hegeszthesőség megállapítás céljából az alapanyag minden adagának (charge) vegyü összesítése külön bizonyítványt igazolni kell. Ha 50.35 S jelű alapanyag esetén a szelvény vastagsága 25 mm-nél nagyobb, akkor a hegeszthesőséget adagoként az MNOSZ 4509 szerinti ráhegeszthesőségujjítópróbával is igazolni kell.

2. A SZÁMÍTÁSRA VONATKOZÓ KÜLÖNLEGES SZABÁLYOK

Hegesztett szerkezetek frádasza különösen emlékeztet, s így azok tervezése során minden esetben mérlegelni kell, hogy a frádasz figyelembe véve érhető indokolt-e. Ha ez indokoltak látszik, akkor a figyelembevédelés módjára vonatkozó különleges a KPM rendeletét ki kell kélni.

2.1 A VARRATOK SZÁMÍTÁSA ÁLTALÁBAN

Hidak erőfeszítés kapcsolásában a tompasavarratok csak a 2.121 pont b. bekezdése szerinti I. osztályú varratokat tervezhetők.

A varratok méretének úgy kell megállapítani, hogy Y'_{HV} határágységbevételük ne-legyen kissé, mint a mértéktől igénybevétel.

2.11 A mértéktől igénybevétel: a B. fejezet 3.2 pontja szerint kell megállapítani.

2.12 A varratok határágységbevételének az $Y'_{HV} = \sigma_{HV} K_{ij}$ képletből kell kiszámítani. E képleternél a a és b két pontban megadott varratoknál σ_{HV} a D. fejezet 4.4 pontjában hőszorozzható határágység, K_{ij} pedig az igénybevételek módjától függő, a keresztszorzat ként tárolható.
2.121 Az r varratnélégy értékek a varrat alakjától, előírt kiviteli módjától, minőségtől, az igénybevétel módjától és az alaphatás minőségtől függően a XIX. táblázat tartalmazza.

(Az r varratnélégy kínálat a táblázatban szereplő érdemei idegennek)

<table>
<thead>
<tr>
<th>Sor- szám</th>
<th>A feszültség helye</th>
<th>Előírás módja</th>
<th>Az alaphatás értéke</th>
<th>Igénybevétel mértéke</th>
<th>Alaphatás minősége</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\alpha = 0.345$</td>
<td>$\varphi = 0.523$</td>
<td>0.035</td>
</tr>
<tr>
<td>1.</td>
<td>I. o.ox. comp. varrat</td>
<td>meg-</td>
<td>hűsős</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>munált</td>
<td>nyomás</td>
<td>0.90</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nyomás</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nyomás</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>2.</td>
<td>I. o.ox. comp. varrat</td>
<td>nyers</td>
<td>hűsős</td>
<td>0.80</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nyomás</td>
<td>0.80</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nyomás</td>
<td>0.60</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nyomás</td>
<td>0.60</td>
<td>0.65</td>
</tr>
<tr>
<td>3.</td>
<td>II. o.ox. comp. varrat</td>
<td>nyers</td>
<td>hűsős</td>
<td>0.60</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nyomás</td>
<td>0.60</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nyomás</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nyomás</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>4.</td>
<td>Sarokvarrat</td>
<td>—</td>
<td>hűsős</td>
<td>0.70</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nyomás</td>
<td>0.70</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nyomás</td>
<td>0.60</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nyomás</td>
<td>0.60</td>
<td>0.65</td>
</tr>
<tr>
<td>5.</td>
<td>K és F K varrat</td>
<td>—</td>
<td>hűsős</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nyomás</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nyomás</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nyomás</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>6.</td>
<td>Alaphatás a homlokvarrat mellett. II. az oldalvarrat</td>
<td>nyers</td>
<td>hűsős</td>
<td>0.60</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nyomás</td>
<td>0.60</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nyomás</td>
<td>0.60</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nyomás</td>
<td>0.60</td>
<td>0.80</td>
</tr>
</tbody>
</table>

* Csak kiviteltlen írásformátolat.

a) A táblázatban szereplő r értékei a 21. fejezet 4.11 pontja szerinti.

b) A nyírás előidéző értékeinek megjelenítése során a nyírast előidőző erők elő-idézőjéhez igazolók.

c) A vizsgázóknak a táblázatban megadottakból kizárólag értékekhez tartozó α ténységeket azonos közelebbitlázattal kell megállapítani.

d) Felületek, függőleges és nehezekek felületen készítő varratok tényezőinek értékeit 30%-al csökkenteni kell. Indokolt esetben ezekre az helyekre is előidőzhető erők varratok.

Tehát a vizsgázóknak készíteni kell a vizsgálati táblájukat, amit a korábbiakon kívül további változásokat tesznek.

e) A homlokvarrat csak oldalvarratral együtt alkalmazható, de a homlokvarratot ison kétszer a méreteken belül.

f) Az oldalvarrat és tompavarrat együttes alkalmazása esetében (pl. 37. ábra) a oldalvarratot csak csökkentett mértékben szabad figyelembe venni. A csökkentés mértékét esetenként ki kell mérföldelni.

Nekünk használható varratok és egymástól 70%-os kisebb szögeit belátni lemezeket összeküldik sarkvarratok erősítéséhez kizárólag szerzhetnek.

2.122 Varrak méretrendezését egyszerű igénybevételre az alábbiak szerint kell végezzük:

<table>
<thead>
<tr>
<th>36. ábra</th>
<th>39. ábra</th>
</tr>
</thead>
</table>

Ha a varratokra ható igénybevétel egyenletes hűső-nyomó vagy nyomó, az $Y = a \sigma K_{2}$ képletben K_{2} a varrat dolgozó területe, melynek értéke az esetben $a \sigma = 0$ a 1. képleben $K_{2} = \Sigma a I$.

1. ábra

E képlethez 1. álmában a varratok a kisérletképződés miatt 10-10 mm-re változatos hossza. Ha a varrat teljes hosszaval számításba vontatására van szükség, akkor a tervező elő kell finálni, hogy a kiválasztásra ne a szerkezettel egyenlő legyen a méretre az alábbiak szerint kell értékelni:

Tompavarratokkal egyenlő vasszegységek esetében a lemezvastagság, egyenlőtest vasszegység esetében a vékonynem lemez vastagsága.

$K = \Sigma a I$ vasszegységek esetében $a = 0.65 \sigma$.

Sarkvarratok esetében a varrat keresztmetszetei beállítható egyszerűsítése kismerete legnagyobb magasság (40. ábra).

46. ábra

2.123 Varratok méretrendezését egyszerű igénybevételre az alábbiak szerint kell végezzük.
2.2 HAJLÍTOTT GERINICLEMEZES TARTÓK

Hegezett gerincleménes hajlított tartó méretrendezés és vizsgálata általában úgy készül, mint a szegélyezet, azzal a különbséggel, hogy az összegecskezés szerepére a hosszúálló illítésű varratoz (az új, nyakvarratok) töltek be. Ezeket az összehasonlító feszültségek alapján kell megvizsgálni.

Ha a gerincleménes tartó érvények keresztmetszete megváltozott, úgy a változó keresztmetszetes szakaszon a nyakvarrat nyírőfeszültségét az alábbiak szerint kell számítani:

$$\tau = N_2 = N_1$$

Hol N_1 = $M_1 \cdot J/\alpha_1$

$N_2 = M_2 \cdot J/\alpha_2$

2.3 RÁGSOS TARTÓK

Hegezett csomópontú rágsos füzet tartók az KKM előzetes engedélye alapján, az engedélyben foglaltak szerint szabad üzemben. Ez az előírás egyes szerkezeti elemek általános kimondottak sem vonatkoznak.

2.4 PÁLYATARTÓK, SZÉLÍRÁSOK

A pályatartók, szélírások számláza során a D. fejezet vonatkozó előírásait értelemszerűen kell alkalmazni.

Füzet óévéhez hegezett szélírás csomóelemek esetében az öv határúgyvételés a XIX. táblázat 6. sz. során előírás szerint kell figyelembe venni.

3. A SZEKESZTÉSRE VONATKOZÓ KÜLÖNLEGES SZABÁLYOK

3.1 ÁLTALÁNOS ELŐÍRÁSOK

Az alkalmazható minimális szelvényméretek a szegélyezet szerkezetekre vonatkozó előírások (D. fejezet 6.15 pont) érvényesek, azonban hegezett szerkezeteken a szállítások legkisebb szélvénysége 60 milliember 50 milliemberen. A tervvezetének tekintetében kell venni a zsigorodás hatását, valamint azt a körülményt is, hogy a keresztirányú zsigorodás általában nagyobb mértékű az hosszállóványtól.

Az egyoldalú zsigorodás okozta kardosság (folytós) csökkentése céljából kivánatos, hogy a szelvénykeresztmetszetet varrati szimmetrikus eredmények legyenek, a lehetőleg egyszerre készítsenek. Ugyanazon kapcsolatban varratozók és szegélyezet III. csoportját együttesen alkalmas általában nem szabad, együttes számításvonatkozók pedig töltsen.

Hozzott óévéhez hostóthvánnyal 45°-os szöget beszámító, megszüntető I. osztályú tompavaratt alapanyaggal együtt a szélirányban tekinthető és így külön szabályosan nem szükséges. Ha a tompavaratt füzet általában előírás szerint kell megvalósítani.

Az alkalmazható minimális szelvényméretek a szegélyezet szerkezetekre vonatkozó előírások (D. fejezet 6.15 pont) érvényesek, azonban hegezett szerkezeteken a szállítások legkisebb szélvénysége 60 milliember 50 milliemberen. A tervvezetének tekintetében kell venni a zsigorodás hatását, valamint azt a körülményt is, hogy a keresztirányú zsigorodás általában nagyobb mértékű an hosszállóványtól.

Az egyoldalú zsigorodás okozta kardosság (folytós) csökkentése céljából kivánatos, hogy a szelvénykeresztmetszetet varrati szimmetrikus eredmények legyenek, a lehetőleg egyszerre készítsenek. Ugyanazon kapcsolatban varratozók és szegélyezet III. csoportját együttesen alkalmas általában nem szabad, együttes számításvonatkozók pedig töltsen.
3.2 VARRATOK

A tervezés során törekedni kell arra, hogy a szerkezet a lehető legkevésbé varrat alkalmazásával készüljön (az egyes szövőnyeregszegmensek kevés elemből álljanak), és hogy az illetékes helyek száma a gazdaságosság határáig kise legyen, továbbá, hogy lehetőleg mindig varrat választható helyeken, feltétlenül legyen elérhető és a varratok jó hozzáférhetőség, ískátható legyen.

A varratok keresztező vagy érintő más varrat készítését — általában a varratok halmaztartalék — kerülő kell. A varratok közelítéséhez létesítési vagy bemutatós általános készítés mellett kell.

Törekedni kell minél kisebb méretű varratok alkalmazására, de erősítődő sarokvarratok mérete a — 4 mm-nél kisebb nem lehet. A sarokvarrat legnagyobb mérete általában a = 0,7 r a. mód kivételével nem lehet nagyobb, mint a, ahol r a a kisebbik lemezvastagság.

Bekölcsők erősítődő sarokvarratereknek legkisebb szélességén vehetık hossza 40 mm-nél, ill. 6 r a. nál kisebb nem lehet, és legnagyobb szélességében vehetik hossza 50 a.

A szereléstű és csavarok helyét a terveken fel kell tüntetni. Ezeken lehetőleg kis igénybevételű helyeken vagy kijárás erre a célra ideálisan felhasználható feltételekhez kerülők keletkeznek, tehát a szereléstű és csavarok száma és méretei minimális legyenek.

A ciklusigények titkosítása biztosítására. Ha a minimális, úgy ezeket a végsőcsovel vagy csavarral lehet készíteni. A feltételek úgytől úgy lehetőleg úgy, hogy a feltételek néhány készenléti lehetők, megkönnyíti az előkészítést.

Egységes sarokvarratok általában inkább tömörvarratok legyenek, mint sarokvarratok. Az ilyen tömörvarratok a terveken csak I. osztályúnak tűztestek fel. Olyan erősítődő kapcsolatokban, ahol Röntgenviszonylat alatt a varrat kijavítása nincs lehetőség, a varrat csak II. osztályúnak számítik, a terveken azonban I. osztályúnak kell jelölni.

A tömörvarratokat megkönnyíti ám nincs kézi azok a szakaszokban, ahol a részlet mérete > ∂r1/v (a a nyers tömörvarrat esetében).

AlРАndány jelentőségű helyekre eltekintve csak egyenes vagy homorú folytonos sarokvarratok készíthetők.

1. A helyszíni szerelési varratok növelését az elkészülés előtt minimálra kell csökkenteni és a varratok helytelen olyan helyekre terveztet, ahol a feszültségek viszonylag kisíkivének.

A varratok alakját és jelölését az MNSZ 4301 és 1653 tartalmazza.

3.3 GÉRIN克莱茨ÉS TARTÓK

Övélemek használati mérete általában 40 mm-nél, folyosóválaszok esetében 50 mm-nél nagyobb nem lehet. Ennél vastagabb óvlemek alkalmazásához a KPM külön engedély szükséges.

Hirtelen kereszteszt-váltóvastagokat kerülni kell.

Övélemek keresztesztje a ráhengeszt leti lehetőleg úgy hengeszt szerekeknek feltételeinek kerülő kell. Ha megpróbál szerkezet megőrzése során ez nem kerülhet el, úgy ott, ahol elegendő olyan lemezek, homokvarratokkal kapcsolódnak, gonsodkodni kell az erősséget folytonosságától (45. ábra).

A célból a ráhengeszt lemez végződését kell készenlétni, ahol készenléte továbbá a 10 mm-nél vastagabb lemezek esetében legfeljebb 10 mm-es méretére — legfeljebb 1 : 10 tájállás —, mindössze egy hatályos homokvarraton, homokvarratot ilyenkor elhelyezni, kifeszültséget kihelyezni. Az óvlemberre hengeszt erősítő lemez nem lehet szélesítés, mint vastagságnak 25-szöröse.}

Ha az illetékes helyen az övélem vagy vastagsági mérete váltott és a vastagságvonlásból 3 mm nem vagy annál kisebb, úgy a megfelelő hajlású átmérővel a vastagságvonlás egyszerűsítésével a visszaadott megkönnyítés mellett kell kialakítani (46. ábra). Ha a vastagságvonlásból annál nagyobb, akkor a vastagság vonatkozására, a 47. ábra szerint elő kell le kellett, hozzát övének esetében pedig a lemezvastagság a 48. ábra szerint elő kell kialakítani.

Különösből vastagsági gerinclemezek illesztéséről 5 mm vastagságvonlás esetében a vastagságvonlásból 8 mm vastagságvonlás a vastagságvonlásból 12 mm vonalból távolságokat (49. ábra), nagyobb mértékű vonalból esetében a lemezvastagság előzetes megkönnyítés szükséges (50. ábra).

\[v_1 - v_2 \geq 6 \text{ mm} \]

\[v_1 - v_2 > 6 \text{ mm} \]

A gerinclemezek merevülését és a tartósátalakításokat úgy kell kialakítani, hogy a gerinc- és óvlemek összekötő nyávkarbantartás alapján maradjon.

A lemez két testhez tartó varratok egymáshoz képest legalább a lemezvastagság méretével el kellene lehetség (51. ábra).
Gerinc- és övlemezek illesztése ilyenkor a féllel 1. osztályú tontavarrattakkal készüljön. A gerinc-
lemezek és övlemezek illesztési helyei lehetőleg ne esjenek egy keresztszereleme. Az előző mérőke kb. az
övlemeze fél szélessége.
Húzott övlemezek tontavarrattal az 54. ábra szerint
45°-os elrendezések legyenek.

3.4 RÁCOS TARTÓK
Rácos fáboltók építésére vonatkozóan lásd a 2.3 pontot.
A melléktételekben szereplő,
A rácsok szélessége a csomópontokhoz, III. a csomólémezhez való csatlakozás személyes
az említett lemezvégzéstől 1 : 8 hajlal szerint való lefedések é催. az eml.
és az általános szabályokat ismeri.

3.5 PÁLYATARTÓK
A használatok és keresztvágások kapcsán a felső húzott övlemezés a kereszttartó övlemeze
felett vagy alatt lehetőleg folytonosnak kell lennie. Ha ez nem lehetséges, úgy át kell felengedni vagy

3.6 RÉGI HÍDAK HEGESZTÉSÉVEL TÖRTÉNŐ ÉRÖSÍTÉSE, ÁTALAKÍTÁSA
Régi híd erősítésének, javításának, átalakításának hegesztésével való tervezése előtt az alapanyag minőség-
gé meg kell állapítani.
Az anyag hegesztettége nézve az 1.1 pontnak új anyagra vonatkozó előírásait mérőkérdők.

3.7 A VARRATOK KÉSZÍTÉSI ÉS MINŐSÉGI SORRENDEJ
A terveken meg kell jelölni a varratok minőségét, a helyszíni varratokat, és fel kell hivni a figyelmek a
különböző gondoskodással készíttett kapcsolatokra, valamint a Kölönp-vizsgálatokat ellenőrizni, továbbá a
hegesztési módok és anyagok vannak.

A tervezők mérföldi és kell azt is, hogy a lehetséges hegesztési sorrend mellett az a helyzetben
ismerhessen. Szem előtt kell tartani, hogy a különböző helyzetekben készülő varratok között
minőségüket szempontból a sorrend kapcsolatba lép:

3.8 HÍKEZELÉS, ELLENŐRZŐ VIZSGÁLATOK, JELÖLÉSEK
A híkezelésre és készítésre vonatkozóan az
a híkezelésével kapcsolatos ellenőrző vizsgálatokra vonat-
kozóan az
a varratok jelölésére vonatkozóan az
az általános- és részt vevőkra vonatkozóan pedig az
előírásait kell betartani.

MOSZ 640,
MOSZ 4309 és 4310,
MOSZ 4302,
MOSZ 6441
I. ANYAGOK

1.1 ACÉLBETÉT

A felsoroltakból előírt minőségű acélbetéteket csak a KPM frábeli engedélyével és az engedélyben megosztott feltételekkel szabad alkalmazni. Íme az előírt minőségű acélbetétet csak alárendelt célokra (pl. távolítókészülék, uralom vagy szerelőbetétítés) használható fel.

1.1.2 Hidrog szállítási kimonondó folyékony határ nélküli acélbetéteket legfeljebb 20 mm átm. szabad felhasználni. A hidép szállítási acélbetét megérintett minőségű jellemzői a következők:

- legkisebb szakítószálásgáz 50 kg/mm²
- legkisebb folyási határ 35 kg/mm²
- legkisebb nyúlás 14% (folyékony határ a feszültség, amely 0,2% marad a nyúlást okoz). A hidép szállítási acélfelémeleg az MNOSZ 112 szerinti A 50.35.12 minőségű acél előírt hajtásnévétől függően, a csavart acélbetéteket olyan jelzéssel kell elítélni, amelyből a csavarad folytonossága megállapítható.

1.1.3 Abban az esetben, ha az acélbetétek hegeszthetősége szükséges, az 1.1.1 pont alatt felsorolt acélok közül az MNOSZ 6289 A szerinti minőségűk bármely átnézett esetében alkalmazhatók, míg az MNOSZ 112 szerinti A 36.24.12 minőségű acél megfelelő ő 20 mm-ig alkalmazható.

A csavart acélbetéteket hegeszthető, de megfelelően a csavart betétekbe azokat a varrat környezetében csak az eredeti (csavart előírt) szállításga vehető figyelembe. (Hidérterületen a csavartak alakított töré tendonlátási lehetőség kerül.)

Egyéb acélok csak akkor szabad hegeszteni, ha azok az MNOSZ 4305-ben előírt hegeszthetőségű félzetének megfelelnek és hegeszthetők a KPM frábeli engedélye adó.

1.1.4 Acélbetétek összeshegeszthetőséhez általában az MNOSZ 6281 szerinti minőségű elektrodákat kell előírni, mégpedig

E 50 jelű a 36.24 S és az A 36.24.12 jelű acélokhoz,
E 65 jelű a 45.30 S és az 50.35 S jelű nagyszállíthatóságú betonációkhoz.

1.1.5 Vasbeton szerkezetekben csak minőségileg igaz és igazoló és igazoló minőségű anyagot szabad felhasználni. Ha a tervben a betétek hegeszthetőséget írja elő, akkor a minőségű betétek az adottanyag hegeszthetőségeire is kielégítők részletjelennek.

A minőségű ellenőrző próbként és vizsgálatokra az MNOSZ 105 (i.e. 3., 6., 9., 14., és 20. haj.)-ban foglaltak mértékei.

1.2 KÖTŐANYAG

1.2.1 A beton kötőanyaga vasbeton felszerkezetekben általában az MNOSZ 4702 A szerinti 600, egyéb vasbeton szerkezetekben pedig általában az 500 jelű cimentre. Általában a ciment 600 nélkül kell felhasználni, akkor a cement vizsgálatokat az alábbiak szerint kell végrehajtani.

6. kötő anyag összetevőinek mértéke - 3. 8.
1.21 Ha a felhasználásra kerülő cimentmennyiség 50-tnál kisebb, akkor az építőcse a ciment minősége

1.22 Ha a felhasználásra kerülő ciment mennyisége 50—100 t között van, minőségének ellenőrzéséhez előke
gyek a helyzeti újítottak cserépok, mígpedig a helyzeti középítró és a térfogatcélú lepény

1.23 Ha a felhasználó ciment 100-tól több, akkor minden megkezdött 100 t minőségét szárazvény

1.24 Az I/2 pontban feloszoltott érzékenységek és a KPM engedélyisége szabad felhasznál

1.25 Környezetfokozat, általános fokozat, koncentrációt javító (plasztifikátort) céljával csoportozni

1.3 ADÁLÉKANYAG

1.3.1 Vasbeton szerkezetek betonjában adalékanyagok általában folyamatos homogén kivágás, vagy bányahomok

1.3.2 Az adalékanyag legnagyobb szemétszáma általában az, amit a szerkezeteknél a ciment szerkezetek általában nem kell elő kerülni. Ha a ciment minősége

1.3.3 Az adalékanyagot felhasználás előtt, a szennyvízhelyének mérését, a szemétszekeket, a növőcserében és a térfogatcélú szemétszerkezethez, hogy

1.3.4 Az adalékanyag folyamatosan felhasználás a ciment szerkezetek általában nem kell elő kerülni. Ha a ciment minősége

1.3.5 Vasbeton szerkezetek általában folyamatos szemétszerkezetek adalékanyagot kell használni, amelynek megkívánt szemétszerkezetek

Table: **F. Vasbeton szerkezetek**

<table>
<thead>
<tr>
<th>D (mm)</th>
<th>60</th>
<th>100</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>1,0</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>2,5</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>5,0</td>
<td>40</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>10,0</td>
<td>60</td>
<td>80</td>
<td>90</td>
</tr>
</tbody>
</table>

- XXI táblázat

<table>
<thead>
<tr>
<th>D (mm)</th>
<th>60</th>
<th>100</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>1,0</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>2,5</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>5,0</td>
<td>40</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>10,0</td>
<td>60</td>
<td>80</td>
<td>90</td>
</tr>
</tbody>
</table>

- XXI táblázat

<table>
<thead>
<tr>
<th>D (mm)</th>
<th>60</th>
<th>100</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>1,0</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>2,5</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>5,0</td>
<td>40</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>10,0</td>
<td>60</td>
<td>80</td>
<td>90</td>
</tr>
</tbody>
</table>

- XXI táblázat

<table>
<thead>
<tr>
<th>D (mm)</th>
<th>60</th>
<th>100</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>1,0</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>2,5</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>5,0</td>
<td>40</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>10,0</td>
<td>60</td>
<td>80</td>
<td>90</td>
</tr>
</tbody>
</table>

- XXI táblázat

<table>
<thead>
<tr>
<th>D (mm)</th>
<th>60</th>
<th>100</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>1,0</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>2,5</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>5,0</td>
<td>40</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>10,0</td>
<td>60</td>
<td>80</td>
<td>90</td>
</tr>
</tbody>
</table>

- XXI táblázat

<table>
<thead>
<tr>
<th>D (mm)</th>
<th>60</th>
<th>100</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>1,0</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>2,5</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>5,0</td>
<td>40</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>10,0</td>
<td>60</td>
<td>80</td>
<td>90</td>
</tr>
</tbody>
</table>

- XXI táblázat

1.4 VÍZ

A beton elkészítéséhez felhasznált víz a víztől szárazként, mint négyzetméterről mért víz, továbbá minden lögy, édes víz (pl. folyóvíz). Ha a víz felületi szárazként, négyzetméterről közvetlenül, akkor vízszintmásolást kell végezni, azokat a labdarúgóban meg kell vizsgálni és a víz csak akkor beléphet a betonba, ha azt a labdarúgot az MNOSZ 934 alapján betonkészítés céljából megfelelőnek mondják.
XXI. táblázat

<table>
<thead>
<tr>
<th>D mm</th>
<th>60</th>
<th>40</th>
<th>30</th>
<th>20</th>
<th>15</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>d mm</td>
<td>a%</td>
<td>b%</td>
<td>a%</td>
<td>b%</td>
<td>a%</td>
<td>b%</td>
</tr>
<tr>
<td>0,5</td>
<td>31%</td>
<td>13%</td>
<td>29%</td>
<td>13%</td>
<td>28%</td>
<td>13%</td>
</tr>
<tr>
<td>1,0</td>
<td>21%</td>
<td>12%</td>
<td>20%</td>
<td>12%</td>
<td>19%</td>
<td>12%</td>
</tr>
<tr>
<td>1,5</td>
<td>18%</td>
<td>12%</td>
<td>18%</td>
<td>12%</td>
<td>17%</td>
<td>12%</td>
</tr>
<tr>
<td>2,0</td>
<td>14%</td>
<td>12%</td>
<td>14%</td>
<td>12%</td>
<td>13%</td>
<td>12%</td>
</tr>
<tr>
<td>2,5</td>
<td>14%</td>
<td>12%</td>
<td>14%</td>
<td>12%</td>
<td>13%</td>
<td>12%</td>
</tr>
<tr>
<td>3,0</td>
<td>14%</td>
<td>12%</td>
<td>14%</td>
<td>12%</td>
<td>13%</td>
<td>12%</td>
</tr>
<tr>
<td>4,0</td>
<td>14%</td>
<td>12%</td>
<td>14%</td>
<td>12%</td>
<td>13%</td>
<td>12%</td>
</tr>
<tr>
<td>5,0</td>
<td>14%</td>
<td>12%</td>
<td>14%</td>
<td>12%</td>
<td>13%</td>
<td>12%</td>
</tr>
<tr>
<td>6,0</td>
<td>14%</td>
<td>12%</td>
<td>14%</td>
<td>12%</td>
<td>13%</td>
<td>12%</td>
</tr>
<tr>
<td>8,0</td>
<td>14%</td>
<td>12%</td>
<td>14%</td>
<td>12%</td>
<td>13%</td>
<td>12%</td>
</tr>
<tr>
<td>10,0</td>
<td>14%</td>
<td>12%</td>
<td>14%</td>
<td>12%</td>
<td>13%</td>
<td>12%</td>
</tr>
</tbody>
</table>

Abraziv-modulus 6,55 5,55 5,55 5,55 5,55 5,55

XXII. táblázat

<table>
<thead>
<tr>
<th>D mm</th>
<th>60</th>
<th>40</th>
<th>30</th>
<th>20</th>
<th>15</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>d mm</td>
<td>a%</td>
<td>b%</td>
<td>a%</td>
<td>b%</td>
<td>a%</td>
<td>b%</td>
</tr>
<tr>
<td>0,5</td>
<td>31%</td>
<td>13%</td>
<td>29%</td>
<td>13%</td>
<td>28%</td>
<td>13%</td>
</tr>
<tr>
<td>1,0</td>
<td>21%</td>
<td>12%</td>
<td>20%</td>
<td>12%</td>
<td>19%</td>
<td>12%</td>
</tr>
<tr>
<td>1,5</td>
<td>18%</td>
<td>12%</td>
<td>18%</td>
<td>12%</td>
<td>17%</td>
<td>12%</td>
</tr>
<tr>
<td>2,0</td>
<td>14%</td>
<td>12%</td>
<td>14%</td>
<td>12%</td>
<td>13%</td>
<td>12%</td>
</tr>
<tr>
<td>2,5</td>
<td>14%</td>
<td>12%</td>
<td>14%</td>
<td>12%</td>
<td>13%</td>
<td>12%</td>
</tr>
<tr>
<td>3,0</td>
<td>14%</td>
<td>12%</td>
<td>14%</td>
<td>12%</td>
<td>13%</td>
<td>12%</td>
</tr>
<tr>
<td>4,0</td>
<td>14%</td>
<td>12%</td>
<td>14%</td>
<td>12%</td>
<td>13%</td>
<td>12%</td>
</tr>
<tr>
<td>5,0</td>
<td>14%</td>
<td>12%</td>
<td>14%</td>
<td>12%</td>
<td>13%</td>
<td>12%</td>
</tr>
<tr>
<td>6,0</td>
<td>14%</td>
<td>12%</td>
<td>14%</td>
<td>12%</td>
<td>13%</td>
<td>12%</td>
</tr>
<tr>
<td>8,0</td>
<td>14%</td>
<td>12%</td>
<td>14%</td>
<td>12%</td>
<td>13%</td>
<td>12%</td>
</tr>
<tr>
<td>10,0</td>
<td>14%</td>
<td>12%</td>
<td>14%</td>
<td>12%</td>
<td>13%</td>
<td>12%</td>
</tr>
</tbody>
</table>

Abraziv-modulus 6,55 5,55 5,55 5,55 5,55 5,55

1.5 BETON

1.51 Helyzetben készült vasbeton felszerelésekhez általában 200 kg/m² és 280 kg/m² megkívánt 28 napon kockázatlánságú betont kell előírni. Egyéb vasbeton szerkezetekhez 140 kg/m² megkívánt 28 napon kockázatlánságú betont is előírható. Elősegítő és kifejezett előírások esetén 140 kg/m² megkívánt 20 napon kockázatlánságú betont is előírható.

1.52 Az előbb fejlesztett betonmennyiségek elérése célja a beton teljesítményét és teljesítménytartási időtartamát megszabályozása, elősegítéséhez és teljesítménytartási időtartamának meghatározásához. A betonmennyiségek előírása az adott műszakos előírásokhoz kötődik, ezért az előírásokat gyakran nem követik az adott műszakos előírásokat.

1.53 A beton szilárdságának megállapítására az alábbi szabályokat szívesen előírjuk, tisztázó és ellentmondásos vizsgálatokat kell végezni. A próbából adott mértékekre, készítésére, tárolására, vizsgálatára és szállítására vonatkozó előírásokat és a MNOSZ 994-ben foglaltak mértékéhez. Észlelt betontelepítményektől készülhet és az előidőben készült betontelepítményektől készülhet.

Az építés folyamán a beton minőségének állapotát minden megkövető 50 m³-en (20%-es műszakos előírás) vagy kockázatlánságú beton specifikumait megfelelő vizsgálatokat kell végezni. Ha az előidőben készült betont a szilárdságának meghatározására nem meghatározott időtartamot tartalmaz, akkor 20%-os műszakos előírásokat kell alkalmazni.

Abraziv-modulus 6,50 5,50 5,50 5,50 5,50 5,50
2. AZ ERŐTANI SZÁMÍTÁS SORÁN FIGYELEMBE VEENŐ TERHELŐ ERŐK ÉS MOZGÁSOK ÁLLAPOTTALGATÁSZI JELLEMZŐK

Vasbeton szerkezetek esetében a B. fejezetben foglalt általános előírásokon felül még a következők mértéke nek

2.1 A zuгорodiást szakítástig külső hatásokra veszben szerkezetek kózpontkezdő (reakcióerők, támogató nyomatékok stb.) meghatározása során, $\varepsilon_{\text{mod}} = 0,0003 \text{ érdék} / (10^\text{C} \times \text{hőmérsékletcsökkenésnek megfelelően})$ kell számításba venni. A laszi állapotot ebben az esetben külön nem kell figyelembe venni, és a rugalmassági tényező, a 2.42 pótlában megadott érdékekkal kell számítani.

Ha a belső hajtás, a keresztmetszetek hatása volt, mi az általános előírásokban megoszto tett számítani, valamint olyan tartók kózpontkezdők megállapításával, amelyekre az állapotot vizsgálat (pl. lapos nyom, stb.) által, a továbbiakban számításával a zugorodiásra — ha a ciment adszolysága nem nagyobb, mint 350 kg/m3 — pontosabb adatok hiányában $\varepsilon_{\text{mod}} = 0,0003 \times (30^\text{C} \times \text{hőmérsékletcsökkenésnek megfelelően})$ kell számításba venni.

Ilyen esetekben a laszi állapot a hatáskör külön kell figyelembe venni.

2.2 Vezetők szerkezeteknél a rugalmasság és hajtás alakítására együttes hatását általában a beton rajzogásai és a zománaségi mértéke nek meghatározása során (pl. a támogató erők és a rugalmassági alakítás hatása) a beton rajzogásai és a zománaségi alakítás hatása.

A beton az állandó jelleget terhelt 28 napos csa után kapja meg a ε-tényező érdékének megfelelően kell megválaszolni (I. fejezet).

E vizsgálat során a számításba vett tartó jelleget terheli és hatásokat szabad úgy érdékelni kell figyelembe venni.

2.3 Az adott által a számításba vett tartó jelleget terheli és hatásokat szabad úgy érdékelni kell figyelembe venni.

2.4 A beton rugalmassági mértéke nek a kocsiádállásától függően a következőképpen kell számításba venni:

2.41 Próbátéhelyes ala alakítások és általában a feszültségek számítása során a rugalmassági mérté ke nek az

$$ K_{\text{mod}} = 550 \frac{K}{1 + 200} $$

képletből kell számítani (I. a beton kocsiádállás kg/m^2 egységben).

A rugalmassági mértéke nek a magánban 28 napos kocsiádállás alapján ilyen módon meghatározott érdéke a szabványban szereplő betonok (a továbbiakban szabványos betonok) esetében a következők:

- 200-as beton esetében 365 000 kg/m^2
- 280-as beton esetében 320 000 kg/m^2
- 200-as beton esetében 285 000 kg/m^2
- 140-es beton esetében 235 000 kg/m^2

2.42 Számtani hitlesség hatására vasbeton szerkezetek alakításainak, valamint a hőmérséklet változásából, a támogatásokból származó erők kezdődik (reakciókor, támogató nyomatékok) számítás során a rugalmassági tényező — a laszi állapot hatására való figyelemmel.
3.2 A SZÁMÍTÁSBA VÉHETŐ TARTÓMAGASÁG

3.2.1 Felszínügyvezetők igénybevételének meghatározása során a tartó változó keretmagasságával, il. a támaszköznél és a keretkeretében tartkaptól a légszinten egyenes vagy íves kiemelésre általában figyelemmel kell lenni. Ha a kiemelés a támaszközönél röviddel, ennek hatását el lehet tekinteni.

3.2.2 A kiemelések figyelembe vettének hatására a kikellőttség szakaszon levő keresztmetszetek határjelöléseinek meghatározása során általában 1, 3-ként — konzoloknál 1 : 1-vel — mérőkreke nem lehet. A szerkezet alakulásának számítására során azonban az alkalmazott kikellőttség mértékeket kell alapul venni.

3.2.3 Ha a tartó a támaszközönél más vasbeton szerkezetű van összekapcsolva, akkor a szabad nyílás széle és a 3.1 pont szerint meghatározott alátámasztás közötti szakaszban a keresztmetszetek mérészetmérés szempontjából figyelembe vehető a 3.2.2 pontban megszabott max. 1:3 hajlású kézkészítés (56. ábra).

3.2.4 A falatott tartók rehbőrössé változásának szempontjából figyelembe vehető tartómagasság pontosabb vizsgálat hiányában a szabad nyílás, il. konzolhossz 1/6 részének nagyobb nem lehet.

3.3 LEMEZÉS GERENDA KERESZTMETZETE

A lemez egy részének a gerendával való együttesdolgozására mind a szálatálgat határozatlan mennyiség, mind az alkotórészek számítása, mind pedig a keretmetszet megerősítése során figyelemmel kell lenni. Ha a lemez vastagsága legalább 8 cm és nem kisebb a teljes tartómagasság 1/6 részének, a gerendával együttest dohagott lemez szélessége — ha pontosabb vizsgálat nem készül —

\[
\beta = b + \frac{\Delta_y}{10}
\]

képletből számítható, ahol az 57. ábra értelmezése szerint

\[
b \quad \text{a lemez és a gerenda csatlakozásánál figyelembe vehető gerendakeszesség,}
\]

\[
\Delta_y \quad \text{il.} \Delta_y \quad \text{pedig a jobbról, il. balról a szárításba vehető lemezkeszség, amely}
\]

bordák közötti lemezrezet esetében

\[
\Delta = 0.1 t
\]

\[
\Delta = 2.3 t
\]

\[
\Delta = 6 d
\]

értékek közül a legkisebb,
3.42 Sülyedő alátámasztású lemezek

3.421 Pályalemezek hajlítsónymációknak szakíthatásának útmutatásának és alátámasztási szerkezetek sülyedő valóságra látogató kézikönyvet kell lenni.

Az alátámasztás sülyedő válságra jellemző a

\[\gamma = \frac{I^2 \cdot \rho_1}{12 \cdot I \cdot \rho_2} \]

89. ábra
3.53 Többáramszó vasbeton gerendák támaszterőinek és nyílóerőinek számításánál általában kétsármú teherállító, lehet figyelembe venni, kivéve a főzarokat, amelyek számításánál a többáramszórásra mindig tekintettel kell lenni.

3.6 OSZLOPOK, KERETSZEKEZETEK

3.61 Oszlopok és keretszekerek szilárdsággi tengelyre az elóserekezet nélkül számaszó keretszekeszetű súlypontokat összekötő vonal. Az így nyerett vonal esetleges féktartalék megfelelő átméntésekkel ki kell küszöbölni és a szilárdsággi tengelynek a kiindulási átlag okozott kisebb törésselől el kell tekinteni.

3.62 Ha a vasbeton hídkeretszekerek tartásgéplete az alštámmazó oszlopként keretszekerek között össze van építve, akkor a keretszekerek minden esetben figyelembe kell venni.

3.63 Ha a keret vízszintes elmozdulásokkal szemben nincs biztosítva, a csomópontok vízszintes elmozdulásairól származó belső erőt minden esetben figyelembe kell venni.

3.64 Befogott kereteknél teljes befogást csak akkor szabad felteitennie, ha a talaj elleég ízület az állandó keretszekerek belső erőit nem tükrözi az alaprendszerű felületét annak súlypontjában mozgat.

3.65 Oszlopok mértéktű igénybevételeinek megállapítása során a tengelyirányba erő hatást mindig figyelembe kell venni, de gerendák és ez az hatás általában elhanyagolható.

3.66 Oszlopok és keretszekerek határigénybevételeinek megállapításakor a kihajlásra tekintettel kell lenni. Az ilyen vizsgálatok során a kihajlás hossza — ha pontosabb számítás nem készül — az alábbiak szerint lehet meghatározni.

Vasbeton oszlopok kihajlás hossza (b) tökéletes befogat, ill. csúkol esetében (ideális alapcsúkó) a 60. ábra értelmezése szerint a következő:

![Diagram](image)

3.67 Nagyobb vasbeton szerkezetek (U-keretek, zárt keretek stb.) funkciómechanikának számítása során a talaj rugalmas ágyazásáról tekintettel kell lenni. Az igénybevételek meghatározása során figyelembe kell venni az alábbi esetek megközelítését is.

3.7 IVSZERKEZETEK

3.71 Izszerkezetek ortotázi számítása során a módosítandó alkváltozásokból származó hatásokra is figyelembe kell lenni, ha az izvos nyúlni megfelelően a hőmérséklet változás és az izvoszmérlet. Izszerkezetek esetén a hőmérséklet változás és a rugalmasság hatása is figyelembe kell hagyni.

3.72 10 m-nél kisebb feszültségű hosszútartalék átviteli, ha az iv magassága a támaszköz nagyobb, és a felületi legnagyobb magassága legalább 0,5 m, akkor a járműbiháló meghatározásának megfelelően egymással szemben különböző hőmérsékletet, a hőmérséklet változás és rugalmasság hatást pedig figyelem mellett hagyni.

3.73 Izszerkezetek egységes átalakításának megállapítását során mind a függőleg, mind a vízszintes irányú kihajlásra tekintettel kell lenni. A kihajlás értékébe vételére pontosabb eljárás hibája az 4.1 pont szerinti történhet.
A függőleges irányú vizsgálat során, ha a horizontális erőt vonoród vezet fel és annak az ívvel való egyúttartás szerkezeti biztonsága vannak, a kifallási hossz a függőzetű hosszok között mért távolság.

F. Vászontervezetek

A közébszőlő értelek arányos közéktételével határozható meg.

<table>
<thead>
<tr>
<th>Készüléktömeg a hosszal</th>
<th>Hosszútartás a hozzal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>0,70</td>
<td>0,70</td>
</tr>
</tbody>
</table>

A vízszintes irányú kifallás szempontjából az alábbi vizsgálatokra van szükség:

- Még kell vizsgálni az ívét a keresztkötések közzét az iv mentén mért hosszal, mint kifallási hosszal függőleges terhekkel számolva központos nyomásra.

\[p = \frac{f}{t} \]

3.8 CSÜLKŐ, SZEKERZEKI KÖ, SZEKERZEKI GERENDA

Betonállóból, gyengített vasbeton kereszterezettel található vasbeton csúkltóból annyiből acélböltesek kell ívvezetni, amennyi a leggyakrabban normálalt és nyírőd felületén egymában is elrendeződik.

A gyengített betonkeresztmetszetben felépülő nyomás a 4.13 pontban meghatározott értékeket nem lépheti túl.
A keresztmetszet nyomott és húzott részének átválasztó határregényeség úgy kell megállapítani, hogy a belső erők egyenlőleg feltehetően kifelé legyen elöntve. Ennek a határregényeségnek a távolsága azonban a keresztmetszet legnagyobb nyomott szélétől — a 65. ábra értelmezése szerint — nem lehet nagyobb, mint $a_1 = \frac{2b}{3}$, ahol c_1 a beton és az adalékonyság minőségtől független XXV. táblázat szerinti számok, b pedig a húzott általakított térfogattartását jel名为うべくすること。}

Az alsóbetétek együttes területét úgy kell megállapítani, hogy a határréteg rájuk jutó része ne legyen nagyobb a betonra jutó határrétegénél.

4.123 Központosan nyomott oszlopokban alkalmazott hosszirányú alsóbetétek keresztmetszetének területe nem lehet kisebb, mint a szükséges betonvastagság 90. táblázat szerint — az oszlopkarosság (F) figyelembe véve megadott számláló vagy a tónyságot betontartalékát 0,50%-ának. Ezeket az alsóbetéteket az oszlopok sarkaitban, ill. kerülete mentén egyenletesen kell továbbítani.

A táblázatban arányos közbekezelés alkalmazható.

4.134 A nyomott általakított térfogattartásra az oszlopok számának a nagyságát $N = a' \cdot \sigma_{ms} \cdot F$

képletből kell számítani, ahol

$a' = 0,75 + \frac{E}{4 \cdot F'}, \quad \text{de legfeljebb 1,5.}$

E képletben

F' és F, a nyomott, ill. teljes felület azon legnagyobb részének, amelynek polízíján az erő támaszpontja egyenlök (64. ábra).

5.34 A keresztmetszetek határregényeségének ellenőrzése

4.14 Ha a húzott általakított térfogattartás

$n = \frac{\lambda}{10} - 15 \cdot \frac{N}{N_{b0}}$, ahol

$t = 4, t'$, t

64. ábra

A betonban húzott feszültségeket figyelembe venni nem szabad.

A betontútteret a nyomott részeten a beton határfeszültséggel megegyező értékű egyenletes feszültségmegosztással kell feltekinni.

Az alsóbetétekben általában a határregényeség, de nyomott alsóbetétekben a beton határfeszültségének legalább 30-szorosra szabad felvenni.
4.162 Ha a hűszerő a betonkeresztmetszet magán kívül támad, akkor a 4.14 pontban a hajlításra meg- szabott eleventeket kell érvényesrendszerekben alkalmazni.

4.17 Hajlítás és kölOPSISZSOS nyomás esetében — ha valamilyen okból szükség van a belső feszültségek megállapítására — ezeket a rugalmasági elvén alapuló számítási módokat hasznosítanak. Ilyenkor az alábbiak szerint kell eljárni:

A betonban hűszeültségek nem szabad figyelembe venni.

A feszültségek változását a keresztmetszet mentén lineárisnak kell feltételezni.

Az acélbetelek és a beton rugalmasági tényezőjének arányát n = 10-re kell felvenni.

Ez az eljárás különleges szerkezetek esetében az épített kivételek a határégysével kisétálására is alkalmazható lehet.

A határégysévekben ebben az esetben azon két igénybevételt közül a kisebbnek, amelyik egyikének az acélbetelekből felhúzott legnagyobb feszültség az 4,5 pont alatti határősségül, miután a betonban felhúzott legnagyobb feszültség, derékszögű négyzeti szelvény esetében 15%-át. T szelvények esetében az előzőértékek változnak 5%-% alatt.

Kis kölOPSISZSOS nyomás esetében a hűszerőnek számítása során az egyszerű felhúzott betonnyomás 1,0-ért kivételével beton/hűsés is figyelembe véve lehető.

4.2.4 FEDELE HŰSZEÜLSZÉGEK (nyírás, csavarás)

A teherszerő iga lásodára során a tartó kötőszől helyén a nyírás- és csavar-igénybevételből, valamint ezekből és a hajlításból, kölOPSISZSOS vagy kölOPSISZSOS nyomásból, ill. hűszerőből együttesen származó hűszeültségeket (forde hűső feszültségeket) is ki kell számítani, követve, ha számítás nélkül is kétetégen (pl. vas tagok esetében), hogy azok a szerkezeti tehervédelem számításban nem befolyásolják (a tartó szövőből származó hűségek esetén kis alakításoknál a 4.1 pont szerint kell eljárni.)

A forde hűső feszültség értéket a vásaslatoknak képező betonkeresztmetszet azon kötőszől helyén kell meghatározani, ahol a nyírás- vagy csavar- vagy hajlító-igénybevételből ill. ezekből együttesen eredő keresztmetszeti nyírásosságt is a legnagyobb.
4.5.3 A beton szállítása vehető határfelszíneitől a megkövetett 28 nappal kockacélátlagosztól függően a XXX. táblázat tünteti fel.

5. AZ ALAKVÁLTOZÁSOK ELENYEZÉSE

Vasbeton hidrázskeretek 15 m-nél nagyobb támasztási szerkezeti elemekének szállítása során igazolni kell, hogy az ellenőrzéseket függetlenül alkalmazottaknak azonosíthatók, hogy a betona testhengeresítősége és a betona átlagműveleti tényezők mértékét is.

5.1 Vasbeton hidrázskeretek esetében a bizonyos-dinamikus és rendelkezési tényezők nélkül szállított hasznos terhelésekkel származó leállítási és kockacélátlagosztó beállítás szerint, hogy azok az állandó terhelés és a korrupciós hatásoknak megfelelő, bizonyos-dinamikus és rendelkezési tényezők nélküli szállított, — hasznos terhelés felderítésének hatására jussanak a terv szerinti helyzetekbe.

6. SZERKEZTÉSI SZABÁLYOK

A következő szabályok helyszínén készített vasbeton szerkezetekre vonatkoznak.

6.1 VASBETON SZERKEZETEK VÉDELME

6.1.1 Vasbeton szerkezeteket úgy kell tervezni, hogy azok a használtból származó kopás veszélyének közvetlenülkitettéve ne legyenek. A félpályás felületeit gyakorlatilag 2 cm, kacsapályon legfeljebb 5 cm vastag burkolatot kell alkalmazni. A burkolatok úgy tervezendőek a lemez hasznos magasságába biztosítani nem szabad.

6.2 AZ ACÉLBETET

Készült hidrázskeretekben az I.1 pontban megszabott anyagi álcéllelalkalmazhatók, azonban a keresztmetszetben különleges szilárdságú acélelemek alkalmazását kérhetik.

6.2.1 Vasbeton szerkezetek sima vagy bordás felületű, illetve készült hideg szilárdított felületű acélelemekének végzésének, töltőválasztására és szállításra az alkibi előírások mértékétől függően.

6.2.1.1 Vasbeton szerkezetek főbeépítési, kenyellet, valamint a lemezess elszállításéhez kapcsolódó akciók körülményeként általános és specifikus okoztatásai.

Megjegyzés: Az A 50,512.12 minőségi mérve acélbetonot B 200-as méretű mérve betonhoz alkalmazható, amely a belső mérvek mértékei szerint azonosíthatók. A belső mérvek mértékei szerint a belső mérvek mértékei szerint azonosíthatók.

Megjegyzés: A sérülékeny foglalt értékek olyan gyakorlati esetekben előfordulhatnak, amikor a belső mérvek mértékei szerint azonosíthatók. A belső mérvek mértékei szerint azonosíthatók.
6.212 Az acélbőrletet túl kell nyújtani azon a keresztmetszeten, amelyben rés mágnesesítés szükségességére. A húzott és kampróval ellátott szélelés tölgyfüggő hosszát (69. ábra) az acélbőrödra és betonon mérő szerinti.

A húzott és kampróval ellátott szélelés túlélési hosszát (69. ábra) a tojásból írt ábra szerinti.

Konzolos szerkezeteknél a a tölgyfüggőben megadott értékeket 50%-kal növelni kell.

![Diagram](image)

6.213 A húzott acélbőrletet tolódás kerülő kell. Ha a tolódás nem kerülő el, azt olyan helyre kell tervezni, ahol az acélbőrödra határfeltételei nincsenek, más szerkezetben is megfelelő lesz a tojásból írt ábra szerinti.

A tojásból írt ábra szerinti eljárással, ha ennek az eljárást a tojásból írt ábra szerinti eljárással, ha pedig d > 25 mm, a tolódást csavarhúvöllyell kell kialakítani.

![Diagram](image)

XXXI. táblázat

<table>
<thead>
<tr>
<th>Acélminőség</th>
<th>Tönkögyési hossz, ha a betonminőség</th>
<th>B 140</th>
<th>B 200</th>
<th>B 200</th>
<th>B 400</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.24.12 és 35.24 S</td>
<td>30 d</td>
<td>25 d</td>
<td>20 d</td>
<td>15 d</td>
<td></td>
</tr>
<tr>
<td>50.35.12, 50.35 S és híresen szellőzött acél (csavar acél)</td>
<td>40 d</td>
<td>35 d</td>
<td>30 d</td>
<td>35 d</td>
<td></td>
</tr>
</tbody>
</table>

XXXII. táblázat

<table>
<thead>
<tr>
<th>Acélminőség</th>
<th>Toldási hossz, ha a betonminőség</th>
<th>B 140</th>
<th>B 200</th>
<th>B 200</th>
<th>B 400</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.24.12 és 36.24 S</td>
<td>40 d</td>
<td>35 d</td>
<td>30 d</td>
<td>25 d</td>
<td></td>
</tr>
<tr>
<td>50.35.12, 50.35 S és híresen szellőzött acél (csavar acél)</td>
<td>50 d</td>
<td>45 d</td>
<td>40 d</td>
<td>35 d</td>
<td></td>
</tr>
</tbody>
</table>

A húzott acélbőrletet tolódás kerülő kell. Ha a tolódás nem kerülő el, azt olyan helyre kell tervezni, ahol az acélbőrödra határfeltételei nincsenek, más szerkezetben is megfelelő lesz a tojásból írt ábra szerinti.

A tojásból írt ábra szerinti eljárással, ha ennek az eljárást a tojásból írt ábra szerinti eljárással, ha pedig d > 25 mm, a tolódást csavarhúvöllyell kell kialakítani.

![Diagram](image)
Az acélbetétek összékevertő végsők kereszttmetszetére duruzzattal felúfövelhető, de a felúfvó keresztt-
metset csak akkor hozzáférhető, ha a zömlelőt végek és az eredeti kereszttmetszet közötti szaktiszt le-
alább 6 cm hosszától egyenlős ásványkőkeresztről történők, és ha a hőkezelés az alapanyag folyati
határszám nélkül lehálózható.

Ha a hővélés cservenykeresztre hozzáfűzéséhez késett, akkor a hővevőlés, a csavarr és a
váratok anyagára, mindigére és számításra a D, III. fajtú előállítás érvényes.

Hilagén szállíttatónként belőle ez a túloldal mód nem engedhető meg.

6.22 A tapadás fokozata céljából megfelelő felületi kialakítás alól kiemelődő (um. peridóros csatlakozó)
acélbetétek véghezintésére, hőfokozat és tolató hosszat vonatkozásában a KFM esetenként intézkedik.

6.23 Felhalmozás (félvágás) acélbetétek legkésőből gőzbeültetés sugara a betét tiszteletes átmérője.

6.24 Hozzát acélbetéteknél olyan gőzbeültetés al.vala tervezőt, amely a vekkény betonforjás le-
repedését okozhatja, kerülhet. Ilyan gőzbeültetésnél az acélbetétekhez lehetőleg egymást közeve a kereszttmetszet
nyomott részegyen elegendő következtét levézhető. Ha a hővélés gőzbeültetés elkerülhetetlen lehet, az
acélbetéteket sugárzású kanyargatást kell a betonba bekeríteni. Ezeknek a kanyargatásnak a felső, tiszte-
ságát és kereszttmetszetét ügy kell megállapítani, hogy az irányításokat okozza sugárzású teljes hőházi
felelősséget biztosítsák.

Nyhony acélbetétek domború gőzbeültetés al.vala veseválásánál fontos előírástokat értemezhetően
lehet nevezni.

6.25 Meresz acélbetétek kereszttmetszetére 4,5 cm-es, tiszteletes és 5 cm-es kisebb
lehet. A meresz acélzat emlés kihajlás ellen biztosítani kell. A heredetés távolsága ne legyen nagyobb
thegyződött tételmeddőtől sugár 70-szeméntl. Ezenkívül a meresz acélbetéteket szeretetlenben kell
kénytelen.

6.26 Az acélbetétek legkésőbb betonfodése — az acélbetétek illetve kerti kút telítését számítva —
átálló-
ban legalább 1,5 cm. Kedveződés körülmények között, közötti az acélra kárnyagok (pl. frégje i
letéken a méret 3—4 cm-re kis venni)

6.27 Bevon bevonjegyezés szerelése olyan meresz legyen, hogy az acélbetétek terve
alakja és helyüket a betonforjást folyamán is megtartott.

6.28 Bevon bevonjegyek közvetlenül a csatlakozó építőműveként ezek nélkül a csatlak. A rajzok és a bévon közé legalább
10 cm vastag sovány betonépítőcég kell bevanítani. Veszélyes csak ez a részgény készülhet.

6.3 A LEHEZ

6.31 A lemez vastagsága általában a nyomottak zárólapok közötti távolság 1/8 részével kisebb
lehet, de ez a méret hőszakítések szabályozásiállományától legalább 1,2 cm, gyaloglásra lenne
élleg legfeljebb 8 cm legyen. Ez utóbbi méret acélszakítéssel hiadik gyaloglásra lemezváltozó 6 cm-mére
lehetett.

6.32 A helyzete szerint lehet a lemez függetlenebb 8 mm, elosztott betétet pedig 7 mm átmérővel kisebbnek
lehetnek.

6.33 A független egységek közötti távolsága, a legnagyobb egységbevétel helyén, 10 cm, ill, annál kisebb
lemezvastagság esetében a lemezvastagság mérőszerszénél, 10-15 cm vastagság esetében 15 cm-nél, ezen felül
edd lemezvastagságnál, de legfeljebb 30 cm-nél nagyobb le mehet.

6.4 A GÉRENDA

6.41 Hossz és keresztmetszetük magassága általában a nyomottak zárólapok közötti távolság 1/6 részé-
kisebb lehet. A hosszat és kereszttmetszetetől a lemezváltozó és a betontávolság közötti 7-8 mm-es
távolságra el kell állítani. A hővélés hosszat és kereszttmetszetetől őrölve a hővélés 2-3 mm-túl le-
hetetlen.

6.42 Hosszat és kereszttmetszetük magassága általában a nyomottak zárólapok közötti távolság 1/4 részé-
kisebb lehet. A hosszat és kereszttmetszetetől a lemezváltozó és a betontávolság közötti 7-8 mm-es
távolságra el kell állítani. A hővélés hosszat és kereszttmetszetetől őrölve a hővélés 2-3 mm-túl le-
hetetlen.

6.43 Kestetlen több horizont függetlenül el kell állítani a hőzónak a hővélés hosszától a lemezváltozó és a betontávolság közötti 7-8 mm-es távolságra el kell állítani. A hővélés hosszat és kereszttmetszetetől őrölve a hővélés 2-3 mm-túl le-
hetetlen.
6.5 AZ OSZLOP

6.51 Négyzetalakú keresztszögletű oszlop kisebb oldalhosszú legalább 20 cm, körkerekesszögetető oszloplnak, III. szakaszú sokszögletű oszlop keresztszögletében belülről kör alakú átmérője legalább 24 cm legyen. T vagy hasonló keresztszögletű oszlop oldalsűrűsége legalább 15 mm-szerű, körkerekesszögetsű ezeknek 450 cm²-nál kisebb nem lehet. Az oszloplakos használati oldalsűrűsége a 450 cm²-tól 14 mm oldalsűrűségig változhat.

6.52 Az oszlop hosszúirányú oldalébítéseinek összes keresztszögleti területe nem lehet kisebb, mint amennyit a használati karácsonyi formátum a 4432 pont után előerősít, és több oldalébítet nem vehet üzemállomásba, mint amennyit a 4432 pont után előerősít.

Merev oldalébítések alkalmazása esetén a két oldal (keresztszögletető és merev) oldalébítet együttesen területe beleértve a beton tényezők keresztszögletének legfeljebb 8%-a lehet.

6.53 A kengyelek általában ne legyenek egymódon sűrűbb sem a legkerekesebb hosszúirányú keresztszöglet átmérőjének 12-szerére, mert pedig az oszlop kisebb oldalsűrűségek esetében a kengyelevől nyúlás a hosszúirányú keresztszöglet átmérőjének 10-szerére több lehet.

50 cm-nél szélesebb oldalak segítségével akár több oldalébítet is lehet alkalmazni. Ilyen oldalébítések kihajtható ellen külön kengyelekekkel kell biztosítani.

Casarvonzánk megoszlos oszloplakokban a kengye megengedhető sem lehet a betonmű átmérői összrése né, ill. 8 cm-nél nagyobb.

6.6 SARU, CSUKLÓ, SZEKEZETI GERENDA

6.61 Ha a támaszkola 10 m-nél kisebb, külön saruk készítésére szükség ejes és elegendő a felszerelés felkevezetését úgy késztetni, hogy a híd felső felület lapja, baloldal oldalából számított 10 cm széleségű szárban terhelhető maradjon. Készült a felszerelés esetén a felszerelést mindkét végén kívül a híd oldalán megtehető körülkerüléseket kihajthatók.

6.62 A sarucsoport vezető nagy összpontos erők irányát később felületen terelni (saru, csukló, vonódbékektézés stb.) lehetővé teszi, hogy a szerkezet kereszthullámú fázisokkal egyező mesterségesen terhelhető.

6.63 Vasbeton szerkezetek akcelerációjának anyagok, szállítása és szerkezésére a D. fejezet vonatkozó rendelkezéseit elfogadjuk.

Az aló sarlap vagy ütvonó lehetősége szerinti megoldások nincs, amelyet általában az aló oldalakon a lélegzési folyamatok akciópontjának vagy más megfelelő anyagok kiegészítőének legelő lehet. A sarukészlet és az aló sarlap oldalai közötti hatások lévén a vizszintes irányú elmozdulások megakadályozása céljából — emathermszabályokat kell készíteni.

6.64 Ha a vasbeton szerkezet csuklói oldalébítet sokszögletű vasbeton keresztszögletet alkot, akkor a csukló forgalma irányában a tartókeresztszögletet eredeti méretének legalább 1/4-ra kell csökkenteni. A csuklóhossz leg magassága (73 mm) nem lehet nagyobb, mint a legkisebb csuklótéte átmérőjének kétitérése. A csuklónegyedszerű jelölés azt a tartókeresztmetszetet jelenti, amelyen a csuklóhosszutó felületen általában legalább 20 mm, egyenletesen víz alatt lecsúszik ezekben a kispontokban, komoly erőforrásos áramkörök esetében pedig 25 mm-nél kisebb nem lehet.

A csukló környezetében erősítés kényelemezés (kisfányszabályok) kell gondoskodni.
G.

KÖ-, BETON- ÉS TÉGLASZERKEZETEK
1. ANYAGOK

1.1 TERMÉSKÖ

Kőhalázat és kőboitozat építőeszközhez repedéstől, valamilyen őrtől, zárva völöktől (pl. egycsögtről) monosz termés-
kö használható.

A terveken és az eredeti százalékosban a kő megkívánt átlagos kockaszárnyalége fel kell tüntetni. A kö-
szállásgén át vízszintesen jölített \(K_{50}, K_{80}, K_{100} \) stb. (lásd 4.21 pontját), ahol a szintjére a kő megkívánt kocka-
szállásgén pubikus, következteto elemekben vannak, kockaszárnyalége fel kell tüntetni. A kő átlagos kockaszárnyalége az MNOSZ 1991 előírásai szerint

gyakran következő: 1.4 pont előírásai érvényesek.

1.2 BETON

1.21 Beton közönyaga általában az MNOSZ 4702 A előírásainak megfelelő cement, Ha más mindiggyé-
közönyagy alkalmazásban válhat szükséges, azt csak a KPM engedélyével, az engedélybe meghozott fel-
tételeknek megfelelően szabad alkalmazni. Egyesekben az F. fejezet 1.2 pontjakon előírásai érvényesek.

1.22 Betonozások folyamán átjáró anyagokra és ennek vizsgálatára az F. fejezet 1.3 pontjában foglalt előírások

módjai között, ahol az összesen, hogy a legnagyobb személyes általában 60 mm, alapaszakében pedig

80 mm lehet.

Nem teherhordó, alrendszer jelenség, vagy számviteleken igénybe nincs betonozások (rézab-
burkolat alsó, védőbeton stb.), alapkőanyagának kivételesen el lehet tekinteni az F. fejezet 1.33 pontjában

előírt vizsgálatoktól, ha az adéla kicsi, szárnyalási helye ismeretlen és felhasználásiértéke a tapasztalat igazolja.

Isten esetében az a terméktétel alapján, hogy a legnagyobb személyes általában 30–65%, de a homokkulturálisének 1 mm-nél kisebb személyes általában a homokkulturális

legfeljebb 70%-%.

1.23 A beton készítéséhez felhasználód a víz felej meg az F. fejezet 1.4 pontjában előírt követelménye-

nyeknek.

1.24 Üzleti készítmény követében csak 1 m-nél nagyobb vattagságú betonozáskor lehetséges akadályt

Aztán legfeljebb egyharmad a lehet azon szerkezeti rész legkisebb méretének, ahol felhasználásra kerül. E méret szerint, hogy betonozókönkben egységet nem haladja meg a 0,6 m-nek. Az üzleti követében legfeljebb sály 10 kg

lehet, a vattagsága egyik irányban nem lehet 15 cm-nél kisebb.

Az üzleti követében elhelyezve csak vállalás esetekben történhet. A követéssel betonozó vattagság

legfeljebb 5 cm legyen, de betonozót hozzáértő felületétől mért távolság (betonozásb) 10 cm-

nél kisebb nem lehet.

Az üzleti követében a beton törési, a betont összetétele értéke legfeljebb 30%-a lehet.

Az üzleti követében a betont összetételének alapja legfeljebb közszerepe legyen a beton előírás 28 napos kocka-
szállásgén. Üzleti követé (pl. bodrogkeresztü követ) — kockaszárnyalége felületével — a célra

alkalmazni nem szabad.

1.25 Teherhordó betonozáskor a szerkezet jellegétől függően 50, 70, 100, 140 ily., 200 kg/cm²

megkíván 28 napos kockaszárnyalégebeton kell használni (szákmetsze betonek). A terveken és az eredeti

szerkezetben a beton megkíván 28 napos kockaszárnyalége fel kell tüntetni. A beton minőségi jelzése B 50, B 70 stb., ahol a szám a beton megkíván 28 napos kockaszárnyalége kg/cm²-ben.

A felsorolt betonminőségek előírásainál az MNOSZ 4702 A-ban előírás cimentek közül lehetőség

gyengédben mindiggy a cimenteket kell alkalmazni, lehetősége, ha különleges körülmények a nagyobb szárnyalége

cementek használása indokolják. A beton szárnyalége befolyásoló tényezők, a felhasználási kivánt adáské
anyag minőségét és a bódolalóznál módosító vízementesanyagot úgy kell megújítani, hogy a szükséges cementmenyesség viszonylag kevés legyen. Az alkalmazható legkisebb cementdélég alap eleve 100 kg

<table>
<thead>
<tr>
<th>Mennyiség</th>
<th>Mérése</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C 400-as cement esetében</td>
<td>150 kg</td>
<td></td>
</tr>
<tr>
<td>C 500-as cement esetében</td>
<td>100 kg</td>
<td></td>
</tr>
</tbody>
</table>

Ha a betonkeretek húszas lépien fel (ld. 4.2 pontot), ezen felvételre szükséges kerülnek alkalmazásra, de azok kis mennyiség miatt a szerkezet kis mértékben, vagy elegendő mértékű, kivéve a vízementes cementdélég, mely kimenetében

<table>
<thead>
<tr>
<th>Mennyiség</th>
<th>Mérése</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C 400-as cement esetében</td>
<td>275 kg</td>
<td></td>
</tr>
<tr>
<td>C 500-as cement esetében</td>
<td>225 kg</td>
<td></td>
</tr>
</tbody>
</table>

A betonkeretek ülésfeszültséggel készülő részében, az alkalmazható legkisebb cementdélég alap eleve 100 kg

<table>
<thead>
<tr>
<th>Mennyiség</th>
<th>Mérése</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C 400-as cement esetében</td>
<td>150 kg</td>
<td></td>
</tr>
<tr>
<td>C 500-as cement esetében</td>
<td>100 kg</td>
<td></td>
</tr>
</tbody>
</table>

A betonkeretek készítésével kapcsolatos értékek

| Képlet | Mennyiség | Mérése | |
|--------|--------|---|
| $R_m = 500,000 \frac{K}{k + 200}$ | az | |

2. AZ ERŐTÁNI SZÁMÍTÁS SORÁN FIGYELEMBE VEENDŐ TERHELŐ ERŐK ÉS MOZGÁSOK: ALKALMAZÁSOS JELLEMZŐK

Kő-, beton- és téglerészeket erőtéri számítás során a B. fejezet 2. pontjában előírtak kívül még a következőket kell figyelembe venni:

2.1 A betonkeretes teljes sugorosdás — pontosabban vizsgálat hiányában — általában $e_{m1} = 0,00015$ értékeket (15% hőmérsékletütközet esetében) kell számításra venni. A lassú alkalmazás esetén

<table>
<thead>
<tr>
<th>Mennyiség</th>
<th>Mérése</th>
<th></th>
</tr>
</thead>
</table>
| Kő- és betonkeretekat az erőtéri számítás során a B. fejezet 2. pontjában előírtak kívül még a következőket kell figyelembe venni:

2.2.1 A betonkeretes teljes sugorosdás — pontosabban vizsgálat hiányában — általában $e_{m1} = 0,00015$ értékeket (15% hőmérsékletütközet esetében) kell számításra venni. A lassú alkalmazás esetén

<table>
<thead>
<tr>
<th>Mennyiség</th>
<th>Mérése</th>
<th></th>
</tr>
</thead>
</table>
| Kő- és betonkeretekat az erőtéri számítás során a B. fejezet 2. pontjában előírtak kívül még a következőket kell figyelembe venni:

2.2.2 A betonkeretes teljes sugorosdás — pontosabban vizsgálat hiányában — általában $e_{m1} = 0,00015$ értékeket (15% hőmérsékletütközet esetében) kell számításra venni. A lassú alkalmazás esetén

<table>
<thead>
<tr>
<th>Mennyiség</th>
<th>Mérése</th>
<th></th>
</tr>
</thead>
</table>
4. A TEHERBIRÁS IGÁZOLÁSA

Köp-, beton- és tégla szerkezetek teherbírását általában a, ill. fejletet 3. pontja szerint az alábbiak — ill. tégla szerkezetek esetében az MNSZ 15 023 — figyelembevételével kell igazolni.

4.1 HATÁRIGÉNYBEVÉTEL

Köp- és beton szerkezeteket általában csak központos nyomásra, ill. a 4.2 pontban megadott feltételeknek megfelelő kis különállósági nyomásra szabad ígénya venni.

4.1.1 Központos nyomás esetében a határérték az

\[N_{F,\text{k}} = a N_{F,\text{ı}} F_{\text{k}} \]

képlettel kell számítani. Ebben a képletben \(F \) a hasznos keresztszámot terítésére, \(N_{F,\text{k}} \) a köp, ill. beton falazat nyomás határfeszültségének, a 4.1.1 ill. 4.2.2 pontok szerint.

Az \(a \) csökkentett tényező értéke az \(m \) v. viszonyzású területől függően:

\[a = \begin{cases} 1 & m \leq 0.1 \text{ m}^2 \\ 1.1 + \frac{m - 0.1}{0.9} & m > 0.1 \text{ m}^2 \end{cases} \]

de legfeljebb 0.8 váltó területén.

\(v \) a szerkezet mértékelt vasárgesszé választerületének, amely derékszögű vagy szöghengerkeresztszám esetében a keresztszámot kisebbik oldalállomásra, más keresztszámok esetében pedig a kihúzás személyi

\(m \) a szerkezet kihajlás hossza, amely rögztetett felület megtámaszása esetében a nyomott szerkezet magassága, szabadon álló falaknál a félmalagosság kicszasztása;

lapokra támaszkodó boltazatoknál L/1,25;

kékcsiszla boltazatoknál L/1,175;

háromcsiszla boltazatoknál L/1,5;

ahol \(L \) a boltazat támaszközé.

Az \(m \) kocsisír kapcsolódva legmaradjóbb értékei

\(a \) kölcsönzökkel az alkalmazott habaras minőségétől függően:

\(H \) 50 habaras minőség esetében 10

\(H \) 80 habaras minőség esetében 15

\(B \) 70-es vagy gyegegés minőségű beton alkalmazása esetében 15

\(B \) 70-as elrendjű minőségű beton esetében 20

Az \(a \) csökkentett tényező fentiek alapján számított értékeit a XXXIV. táblázat tünteti fel.

4.12 Kis különállóságú nyomás esetében — ha az egyenlő egyenlő nyomófeszültségekkel bírozóható a határért az

\[N_{\text{ı,\text{k}}} = 1,35 a N_{\text{ı}} F_{\text{k}} \]

képlettel kell kiszámítani, de ennek értéke nem léphet ki túl a 4.11 pontban a központos nyomásra megadott határértékről.

Ebben a képletben \(P \) a hasznos keresztszámokat a terhelő erőhöz képest legnagyobb központos része (74. ábra) \(a_{\text{ı}} F_{\text{ı}} \) a falazat nyomás határfeszültsége. Az \(a_{\text{ı}} \) csökkentett tényező számításnál a teljes hasznos keresztszámot kell figyelembe venni.

4.13 Ha a nyomóerdő a felülethez csúcsú egy részére összpontosul, akkor a felület vizsgálatánál a határért az

\[N_{\text{ı,\text{k}}} = a_{\text{ı}} N_{\text{ı}} F_{\text{ı}} \]

képletből kell számítani, ahol \(a_{\text{ı}} = 0.75 + \frac{P_{\text{ı}}}{4 F_{\text{ı}}} \)

de legfeljebb 1.5. Ebben a képletben \(P_{\text{ı}} \), ill. \(F_{\text{ı}} \) a nyomott, ill. teljes felületének az a legnagyobb részére jelenti, amelynek súlypontja az erő támaszpontjával egyenes (64. ábra).
5. AZ ALAKVÁLTOZÁSOK ELENTÖRZÉSE

II. Kör, beton- és téglaerzekezet

6. SZEKRESZTÉSI SZABÁLYOK

A szerkezetek hordalékos víz szintjét jelöli a keletmenő és nyugatmenő átjárókhoz és az átnyúló tömegekhez. A víz folytán a hordalékos víz szintjét a vizelvezetés és a vízvezetés következményeit és a vízbevetés re ashorgesztésein túl kell gondoskodni.

- Külső pillérek, támaszok
- Külső támogatások
- Téglafalazatok

Az alkalmazott falalakzatokat vonalzat elűzésével, valamint a különleges feltételek mellett a természetes

6.31. A falalakzat következményei aláírva törvényterületi idomok, amelyek a külső létező falalakzat

- Külső pillérek
- Téglafalazatok

- Külső pillérek

A falalakzat következményeit megkülönböztetni kell a falalakzat elűzésétől.

A falalakzat következményeit megkülönböztetni kell a falalakzat elűzésétől.

- Külső pillérek

A falalakzat következményeit megkülönböztetni kell a falalakzat elűzésétől.

A falalakzat következményeit megkülönböztetni kell a falalakzat elűzésétől.

- Külső pillérek

A falalakzat következményeit megkülönböztetni kell a falalakzat elűzésétől.
Ha a köbburkolat a tehervitelésben részi vesz, akkor a falazat és a burkolat egyenletes ígénybevétele és egyenlő ütemezésére különös gondot kell fordítani.
Betontesztek burkolásra a 6.3 pontban megadott méreteken kisebb méreteket követve fehér félhelvezények és fehér félhelvészekhez az alapfelületet kell lerakatni.
A burkoló köveket a bekötő laposolókkhoz átívelő betoncsődel segítségével kell erősíteni (73. ábra).
A hőszigeteléshez felhasználható habsz. cimentszagolat m²-ként legnagyobb 350 kg legyen.
A burkolat füskőövöknek vasszigága 12 cm-nél kisebb nem lehet, a bekötőkövek pedig általában ennek legalább kétszerese legyen.
6.4 Helyzetszín készítés cső- és boltotott átételek
2.0 m-től nem nagyobb nyílású beton csőözéreszek nél a kedvezőbb létfolyási viszonyok biztosításához lehetőleg boltlasságú nyílású külső felületen kell alkalmazni (76. ábra).
Cső- és boltotott átételek 60 cm-nél kisebb belső szélességgel (α) nem készülhetnek.
Betoncsőözéreszek legkisebb falvastagsága 15 cm lehet, feltéve, hogy az alkalmazott beton minősége legalább B 200.
Fenti előírások csőözéreszekre nem vonatkoznak.
A csőözéreszek rongálódásának elkerülése céljából mind a befolyó, mind a kifolyó oldalon az ök legalább 3 cm sugárú lekerülőtlennek kell készíteniük.
Ha a csőözéreszben az átéfolyó víz sebessége nagyobb, mint 1,5 m/sec, akkor útöntelen, ha pedig 2,5 m/sec-nél is nagyobb, akkor a kifolyási oldalon csillapító modonnat kell tervezni.

H.

FASZERKEZETEK
1. ANYAGOK

1.1 ÉPÍTŐFÁK

1.1.1 Az építőkre felhasznált fa anyagának kiválasztásánál a beépítés körülményeit (száraz, nedves) és a szerkezet jellegét (ideiglenes, végleges) figyelembe kell venni.

Végleges jellegű hídtervezetekhez általában az alábbi fanemek használhatók:

- puha fák: jegyfa-, lucf-, erdei- (borovi-) fakke- és vörösfenyő, nyárfa;
- keményfá: tölgy (sertölgy kivételével), bükk, akác.

Állandóan földben, vízben vagy vízszintes légszínben és levágásnál lévő végleges szerkezeti elemekhez kelléke nélkül csak a vörösfenyő és tölgy használható fel, míg a felsorolt többi fa anyagot ilyen célokra törésnél felhasználás esetében kelléke nélkül lehet szükség.

Ideiglenes (1 évnél rövidebb használatra épülő) létesítményeknél a fenn felsorolt összes faanyag — bükk kivételével — bármely helyre kelléke nélkül lehet felhasználó.

Fentiekben elérhető fanemek beépítését csak a KPM előzetes külön engedélye alapján lehet terembe venni.

1.12 Az építőfa általában szükséges, hengeres (gömbs) vagy fahengeres (félömb) legyen. A szükséges fa lehet törészet vagy faragott. A szükséges fa éles sarkokat csak különleges, indokolt esetekben lehet (pl. gyűrűs, betétes kapcsolók esetében), és ha szerkezeti okból éles sarkok nem szükségesek, a sarkok lehetőleg fahengeresek legyenek.

A fahengeresség mérete (77. ábra a méret), a körív húrthosszán mérve, ne legyen nagyobb

- mindig hídezőfá esetében (lásd 1.14 pontot) sem a kisebbik teljes oldalmért (b) 1/4-ánál, sem a nagyobbik teljes oldalmért (b) 1/2-ánál;
- közönséges és csúcskentett minőségű hídezőfá esetében sem a kisebbik oldalmért (b) 1/4-ánál, sem pedig a nagyobbik teljes oldalmért (b) 1/2-ánál.

1.13 A beépítőkre kerülő fa anyag legfeljebb n = 30%, nedvességtartalmú legyen, és gondoskodni kell arról, hogy a fa további száradhasson. Általannak ideiglenes építményeknél felhasználható nagyobb nedvességtartalmú, esetleg főzésen dönthető fa is.

* Csak korrózió és rosszvágás elleni célzatok.
H. Faszerkezetek

1.142 Minőségi hídépítőfűtő

<table>
<thead>
<tr>
<th>Műszaki kivitel</th>
<th>Hídépítő fűtőfűtő</th>
<th>2%</th>
<th>3%</th>
<th>4%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Keretmentes mérnöki felületű, hengeres földi árnyékozás, négy- szögű keretmentes földi, oldalhosszú mére, leforgó 1</td>
<td>1</td>
<td>2%</td>
<td>3%</td>
<td>4%</td>
</tr>
<tr>
<td>2. A csavarodódás, fúrtadás és mértéke annak az alapnak a 0,5%-a, melyet hengeres földi az elfordulási sáv, szögletű földi a hosszasságra (1 m) le, a leforgó kapasztas-vedelmi, gépmentes helyen mérve. Értéke leforgó</td>
<td>4</td>
<td>0,15</td>
<td>0,35</td>
<td></td>
</tr>
<tr>
<td>3. Gőzhatás, húttal vagonosítás a legnagyobb lehajlásban, leforgó</td>
<td>0,8</td>
<td>1,0</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>4. A csavarodódás mértéke (hengeres filisz)</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>5. A leforgó, legnagyobb mérete</td>
<td>5 cm</td>
<td>7 cm</td>
<td>9 cm</td>
<td></td>
</tr>
</tbody>
</table>

1.141 Hídépítési ciklókra felhasználható fiányagok minőségi feltételei a XXXVII. ciklóra tartoznak.

<table>
<thead>
<tr>
<th>műszaki kivitel</th>
<th>hídépítő fűtőfűtő</th>
<th>0,15</th>
<th>0,25</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Keretmentes mérnöki felületű, hengeres földi árnyékozás, négy- szögű keretmentes földi, oldalhosszú mére, leforgó</td>
<td>0,15</td>
<td>0,25</td>
<td></td>
</tr>
<tr>
<td>2. A csavarodódás, fúrtadás és mértéke annak az alapnak a 0,5%-a, melyet hengeres földi az elfordulási sáv, szögletű földi a hosszasságra (1 m) le, a leforgó kapasztas-vedelmi, gépmentes helyen mérve. Értéke leforgó</td>
<td>3 mm/m</td>
<td>4 mm/m</td>
<td>6 mm/m</td>
</tr>
</tbody>
</table>

1.18 A szerelési terveken és az erősítő számításban a felhasználódó szerkezeti fiányagok minőségére vonatkozóan fel kell tűnni:

<table>
<thead>
<tr>
<th>műszaki kivitel</th>
<th>hídépítő fűtőfűtő</th>
<th>0,15</th>
<th>0,35</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Keretmentes mérnöki felületű, hengeres földi árnyékozás, négy- szögű keretmentes földi, oldalhosszú mére, leforgó</td>
<td>0,15</td>
<td>0,35</td>
<td></td>
</tr>
<tr>
<td>2. A csavarodódás, fúrtadás és mértéke annak az alapnak a 0,5%-a, melyet hengeres földi az elfordulási sáv, szögletű földi a hosszasságra (1 m) le, a leforgó kapasztas-vedelmi, gépmentes helyen mérve. Értéke leforgó</td>
<td>3 mm/m</td>
<td>4 mm/m</td>
<td>6 mm/m</td>
</tr>
</tbody>
</table>

1.2 KAPCSOLÓELEMEK ANYAGYA

<table>
<thead>
<tr>
<th>műszaki kivitel</th>
<th>hídépítő fűtőfűtő</th>
<th>0,15</th>
<th>0,35</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Keretmentes mérnöki felületű, hengeres földi árnyékozás, négy- szögű keretmentes földi, oldalhosszú mére, leforgó</td>
<td>0,15</td>
<td>0,35</td>
<td></td>
</tr>
<tr>
<td>2. A csavarodódás, fúrtadás és mértéke annak az alapnak a 0,5%-a, melyet hengeres földi az elfordulási sáv, szögletű földi a hosszasságra (1 m) le, a leforgó kapasztas-vedelmi, gépmentes helyen mérve. Értéke leforgó</td>
<td>3 mm/m</td>
<td>4 mm/m</td>
<td>6 mm/m</td>
</tr>
</tbody>
</table>

1.3 VÉDÖGÁNGOK

<table>
<thead>
<tr>
<th>műszaki kivitel</th>
<th>hídépítő fűtőfűtő</th>
<th>0,15</th>
<th>0,35</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Keretmentes mérnöki felületű, hengeres földi árnyékozás, négy- szögű keretmentes földi, oldalhosszú mére, leforgó</td>
<td>0,15</td>
<td>0,35</td>
<td></td>
</tr>
<tr>
<td>2. A csavarodódás, fúrtadás és mértéke annak az alapnak a 0,5%-a, melyet hengeres földi az elfordulási sáv, szögletű földi a hosszasságra (1 m) le, a leforgó kapasztas-vedelmi, gépmentes helyen mérve. Értéke leforgó</td>
<td>3 mm/m</td>
<td>4 mm/m</td>
<td>6 mm/m</td>
</tr>
</tbody>
</table>

2. AZ ERŐTANI SZÁMÍTÁS SORÁN FIGYELMEZETVE VÉNDŐ TERHELŐ ERŐK ÉS MOGZASOK; ALAKÍTÁZÁS ÁLALJELEMZŐK

<table>
<thead>
<tr>
<th>műszaki kivitel</th>
<th>hídépítő fűtőfűtő</th>
<th>0,15</th>
<th>0,35</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Keretmentes mérnöki felületű, hengeres földi árnyékozás, négy- szögű keretmentes földi, oldalhosszú mére, leforgó</td>
<td>0,15</td>
<td>0,35</td>
<td></td>
</tr>
<tr>
<td>2. A csavarodódás, fúrtadás és mértéke annak az alapnak a 0,5%-a, melyet hengeres földi az elfordulási sáv, szögletű földi a hosszasságra (1 m) le, a leforgó kapasztas-vedelmi, gépmentes helyen mérve. Értéke leforgó</td>
<td>3 mm/m</td>
<td>4 mm/m</td>
<td>6 mm/m</td>
</tr>
</tbody>
</table>

2.1 Ideiglenesnek tekinthető faszerkezetek, amelyek rendeltetésszerű használatának ideje 1 évig nem több, az előző esetében jellegű terheléseket csökkenteni lehet. A tervezés során figyelmeztető terhelőket esetenként a KPM irája elő.

2.2 Faszerkezetek mérétszintjét során a hőmérőkleválasztásból származó hatások általában figyelemnél kivállalhatók.

2.3 Faszerkezetek túllélességének meghatározás során, valamint szállítási hatása és az egész területen megfelelő terhelést használjuk.

3. KAPCSOLATOK

<table>
<thead>
<tr>
<th>műszaki kivitel</th>
<th>hídépítő fűtőfűtő</th>
<th>0,15</th>
<th>0,35</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Keretmentes mérnöki felületű, hengeres földi árnyékozás, négy- szögű keretmentes földi, oldalhosszú mére, leforgó</td>
<td>0,15</td>
<td>0,35</td>
<td></td>
</tr>
<tr>
<td>2. A csavarodódás, fúrtadás és mértéke annak az alapnak a 0,5%-a, melyet hengeres földi az elfordulási sáv, szögletű földi a hosszasságra (1 m) le, a leforgó kapasztas-vedelmi, gépmentes helyen mérve. Értéke leforgó</td>
<td>3 mm/m</td>
<td>4 mm/m</td>
<td>6 mm/m</td>
</tr>
</tbody>
</table>

4. A kapcsolatok elozetését - ha kiderül, hogy az elozetés nem teljesíthető - a kapcsolatok következőként az alábbiak szerint lehetőséget nyújtani:

<table>
<thead>
<tr>
<th>műszaki kivitel</th>
<th>hídépítő fűtőfűtő</th>
<th>0,15</th>
<th>0,35</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Keretmentes mérnöki felületű, hengeres földi árnyékozás, négy- szögű keretmentes földi, oldalhosszú mére, leforgó</td>
<td>0,15</td>
<td>0,35</td>
<td></td>
</tr>
<tr>
<td>2. A csavarodódás, fúrtadás és mértéke annak az alapnak a 0,5%-a, melyet hengeres földi az elfordulási sáv, szögletű földi a hosszasságra (1 m) le, a leforgó kapasztas-vedelmi, gépmentes helyen mérve. Értéke leforgó</td>
<td>3 mm/m</td>
<td>4 mm/m</td>
<td>6 mm/m</td>
</tr>
</tbody>
</table>

5. ÁLALJELEMZŐK

<table>
<thead>
<tr>
<th>műszaki kivitel</th>
<th>hídépítő fűtőfűtő</th>
<th>0,15</th>
<th>0,35</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Keretmentes mérnöki felületű, hengeres földi árnyékozás, négy- szögű keretmentes földi, oldalhosszú mére, leforgó</td>
<td>0,15</td>
<td>0,35</td>
<td></td>
</tr>
<tr>
<td>2. A csavarodódás, fúrtadás és mértéke annak az alapnak a 0,5%-a, melyet hengeres földi az elfordulási sáv, szögletű földi a hosszasságra (1 m) le, a leforgó kapasztas-vedelmi, gépmentes helyen mérve. Értéke leforgó</td>
<td>3 mm/m</td>
<td>4 mm/m</td>
<td>6 mm/m</td>
</tr>
</tbody>
</table>
3. AZ ERŐTANI SZÁMÍTÁS SÓRÁN FIGYELEMBE VEENDŐ MÉRETEK ÉS FELELVESEK

3.1 A tartó elméleti támogatásuk általában az alátámasztó sarok vagy csúcsok középvonalai között mért távolság.

3.1.1 Falra vagy gerendára fektetve tartó támogatások az 5%-kal megövezet szabálysúlas. Ha ez a méret a felfekvő lapok középvonalai között mért távolságnál nagyobb, akkor ez utóbbi méret a mértékeké.

3.1.2 Könyökös gerendát — ha pontosabb számítás nem készül — olyan szabadság felfekvő kétdámasztó tartóként kell számítani, amelynek támogatását egyezszerű beéresztett könnyök (78. ábra) esetében $(l_1 + l_2)/2$ csomópontot tartalmazó közönséges kialakítású könnyökbe (79. ábra) esetében l_1, l_2 az ábrák szerint értelmezett távolságokat jelentik.

![Diagram](image-url)
A 4. TEHERBÍRÁS IGAZOLÁSA

A szerkezet tehерbiráshoz az igazolásra ki kell mutatni, hogy a B fejezet 2. pontjában, valamint a fejezet 2. pontjában felsorolt terhelő erőkből és mágnesesből keletkező, a B fejezet 3.2 pontja, ill. az alábbiak szerint számított mértékadó igénybevétel nem nagyobb, mint az alábbiak szerint számított határigénybevételek.

4.1 MÉRTÉKDADÓ IGÉNYBEVÉTEL

Válaszadó igénybevételdő oldal beküldéseit és illesztéseit a legnagyobb nyomógénybevétel-1.3-szerese és a legnagyobb hidrágybevétel 1.4-szereze közül a nagyobbikra kell méretözni.

4.2 HATÁRIGÉNYBEVÉTEL

Tehерhordó fütőzott határigénybevételek: (hőerődi, nyomóerő, hajítóerő, különös erő stb.) általánosan a 3.4 pont szerint számított határigénybevételt, ill. határiszúságszámítás és teljesítéséhez, a lemaradások és szerinti mértékadó igénybevétel nem nagyobb, mint az alábbiak szerint számított határigénybevétele.

Mára (a), (b) és (c) azonos szerkezetek részét a határigénybevételekei szállítását is szükséges határigénybevételek számára és a határigénybevételek szerinti mértékadó, míg az a Igénybevétel a határigénybevételek számára és a határigénybevételek szerinti mértékadó, míg az a határigénybevételek számára és a határigénybevételek szerinti mértékadó.
4.213 A bépcímket szerkezetekre ható külső nedvesség függvény alapján a második szorzatértékeket kell alkalmazni. A kedvező védenénynőnek, a hajtóműnek és a hasznosító főrészhez tartozó berendezéseken is alakítható. A védenénynő, a hajtómű és a főaljzat a FIV-tól függően külön sorra kell megadni.

A 4.212 és 4.213 pontban megszólaltatott szorzatértékeket.

4.214 Ideiglenesnek tekinthető — legfeljebb egy év időtartamú — fokozatos fűtés, amely a hasznosításban is alkalmazott. A védenénynő értéke a XLIII. táblázat 1—5 slán alatt megszólaltatott határfeszültségekre 1,30, míg az összes többi határfeszültségre 1,15. Fritis döntést fa esetében — mely csak ideiglenes szerkezetes; használatban szerepel — ezekkel a védenénynőkkel nem szabad szorosan.

4.215 A szerkezeti elem méretek közé függő szorzatértékek:

a) Négyzgépkeretrendszertől függő szorzatértékek:

A XLIII. táblázat szerinti 1. és 3. számú (σ_{13}^{l}, σ_{13}^{d}) feszültségeket:

<table>
<thead>
<tr>
<th>v/3</th>
<th>1.20</th>
<th>1.00</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.15</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.10</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

b) Hengeres csetele:

ha középméridege legfeljebb 10 cm és hossza legfeljebb 6,0 m, továbbá annál hosszabb fő aljzat összesen, ha a fejpéterő legfeljebb 10 cm, a XLIII. táblázat szerinti

<table>
<thead>
<tr>
<th>v/3</th>
<th>1.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1.00</td>
</tr>
</tbody>
</table>

4.216 Talpigendura támaszkodó oszlop esetében (84. ábra) a talpigrenda a rostokkal párhuzamos irányban a nyomott felülettel jobbra-bala tűnyílik, akkor a módosított tényező az XLIII. táblázat szerinti 4. és 5. számú (σ_{12}^{l}, σ_{12}^{d}) feszültségekre:

ha a tűnyílás a talpigrenda magasságával összevonva, akkor a módosított tényező az XLIII. táblázat szerinti 4. és 5. számú (σ_{12}^{l}, σ_{12}^{d}) feszültségekre:

ha a tűnyílás a talpigrenda magasságával összevonva, akkor a módosított tényező az XLIII. táblázat szerinti 4. és 5. számú (σ_{12}^{l}, σ_{12}^{d}) feszültségekre:

4.217 Ivesen szegélyez vagy csavarozott szerkezeteknél a gőröltügysugár (E) a fogantatott szerkezeti elem vastagságának (d) 300-szoránál kisebb általában nem lehet. Ha kivétel, d/30 = 200, akkor a σ_{12}^{l}, σ_{12}^{d} és σ_{12}^{d} határfeszültségeket a XI. táblázatban megszólaltatott tényezőkhöz kell szorosan.

![Diagram](https://via.placeholder.com/150)

* magas belső támadás

Táblázat
4.22 Küzpontos nyomásra igénybevett egyeneszegélyű prizmatikus röd (oszlop) esetében a határerő

\(N_H = K_H \sigma_{sh} \varphi \)

képletből kell számítani, ahol \(\sigma_{sh} \) a fa nyomás hatékonysága a rostokkal párhuzamosan, \(\varphi \) pedig a hasznos keresztszeméttől.

\(\sigma_{sh} \) értékét \(\lambda \) függvényében a XLIV. táblázat tartalmazza.

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>(K_1)</th>
<th>(K_2)</th>
<th>(o_{1})</th>
<th>(\lambda)</th>
<th>(K_1)</th>
<th>(K_2)</th>
<th>(o_{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
<td>0.05</td>
<td>0.30</td>
<td>0.25</td>
<td>0.30</td>
</tr>
<tr>
<td>0.5</td>
<td>1.44</td>
<td>1.35</td>
<td>0.998</td>
<td>0.10</td>
<td>0.31</td>
<td>0.75</td>
<td>0.27</td>
</tr>
<tr>
<td>1</td>
<td>2.89</td>
<td>2.50</td>
<td>0.994</td>
<td>0.15</td>
<td>0.33</td>
<td>0.80</td>
<td>0.25</td>
</tr>
<tr>
<td>1.5</td>
<td>4.33</td>
<td>3.75</td>
<td>0.986</td>
<td>0.20</td>
<td>0.34</td>
<td>0.84</td>
<td>0.23</td>
</tr>
<tr>
<td>2</td>
<td>5.77</td>
<td>5.00</td>
<td>0.974</td>
<td>0.25</td>
<td>0.36</td>
<td>0.88</td>
<td>0.21</td>
</tr>
<tr>
<td>2.5</td>
<td>7.22</td>
<td>6.25</td>
<td>0.962</td>
<td>0.30</td>
<td>0.37</td>
<td>0.92</td>
<td>0.19</td>
</tr>
<tr>
<td>3</td>
<td>8.67</td>
<td>7.50</td>
<td>0.949</td>
<td>0.35</td>
<td>0.39</td>
<td>0.96</td>
<td>0.18</td>
</tr>
<tr>
<td>3.5</td>
<td>10.12</td>
<td>8.75</td>
<td>0.936</td>
<td>0.40</td>
<td>0.41</td>
<td>1.00</td>
<td>0.18</td>
</tr>
<tr>
<td>4</td>
<td>11.57</td>
<td>10.00</td>
<td>0.924</td>
<td>0.45</td>
<td>0.43</td>
<td>1.04</td>
<td>0.19</td>
</tr>
<tr>
<td>4.5</td>
<td>13.02</td>
<td>11.25</td>
<td>0.912</td>
<td>0.50</td>
<td>0.45</td>
<td>1.08</td>
<td>0.20</td>
</tr>
<tr>
<td>5</td>
<td>14.47</td>
<td>12.50</td>
<td>0.899</td>
<td>0.55</td>
<td>0.47</td>
<td>1.12</td>
<td>0.21</td>
</tr>
<tr>
<td>5.5</td>
<td>15.93</td>
<td>13.75</td>
<td>0.887</td>
<td>0.60</td>
<td>0.49</td>
<td>1.16</td>
<td>0.22</td>
</tr>
<tr>
<td>6</td>
<td>17.38</td>
<td>15.00</td>
<td>0.875</td>
<td>0.65</td>
<td>0.52</td>
<td>1.20</td>
<td>0.23</td>
</tr>
<tr>
<td>6.5</td>
<td>18.84</td>
<td>16.25</td>
<td>0.863</td>
<td>0.70</td>
<td>0.54</td>
<td>1.24</td>
<td>0.24</td>
</tr>
<tr>
<td>7</td>
<td>20.29</td>
<td>17.50</td>
<td>0.851</td>
<td>0.75</td>
<td>0.56</td>
<td>1.28</td>
<td>0.26</td>
</tr>
<tr>
<td>7.5</td>
<td>21.75</td>
<td>18.75</td>
<td>0.839</td>
<td>0.80</td>
<td>0.58</td>
<td>1.32</td>
<td>0.28</td>
</tr>
<tr>
<td>8</td>
<td>23.20</td>
<td>20.00</td>
<td>0.827</td>
<td>0.85</td>
<td>0.60</td>
<td>1.36</td>
<td>0.30</td>
</tr>
<tr>
<td>8.5</td>
<td>24.66</td>
<td>21.25</td>
<td>0.815</td>
<td>0.90</td>
<td>0.62</td>
<td>1.40</td>
<td>0.32</td>
</tr>
<tr>
<td>9</td>
<td>26.12</td>
<td>22.50</td>
<td>0.803</td>
<td>0.95</td>
<td>0.64</td>
<td>1.44</td>
<td>0.34</td>
</tr>
<tr>
<td>9.5</td>
<td>27.57</td>
<td>23.75</td>
<td>0.790</td>
<td>1.00</td>
<td>0.66</td>
<td>1.48</td>
<td>0.36</td>
</tr>
<tr>
<td>10</td>
<td>29.03</td>
<td>25.00</td>
<td>0.778</td>
<td>1.05</td>
<td>0.69</td>
<td>1.52</td>
<td>0.38</td>
</tr>
</tbody>
</table>

\[\lambda = \frac{\varphi}{l} \]

\[K_H = \frac{\sigma_{sh}}{l} \]

\[K_H = \frac{\varphi}{\lambda} \]

A \(\lambda \) kacsisági tényező egységes keresztszemét esetére a 4.221, összetett keresztszemétre pedig a 4.222 pont szerint határozandó erő.

A kacsisági tényező

ha a röd csak nyomott főtartóelemei kimerülésére szolgál, sovábbá, ha az esetleges jellegű terhelések közül csak a szövetterhelések okoznak benne igénybevétel, 200-ról, minden egyéb nyomott röd vagy oszlop esetében 150-ról nagyobb nem lehet.

4.221 Egységes keresztszemestő rödönél a kacsisági tényező:

\[\lambda = \frac{1}{2} \]

a hálózat hossza

\(\lambda \) a mértékként mérhető egység.

4.222 Összetett keresztszemész, vagyis több elemből összefűzött rödönél, amelynél az egyes elemek közé nem nagyobb egy rödelem kisebb oldalméretének kétszereséből, a kacsisági tényező — ha pontosabb számítás nem készül — a következőképpen kell meghatározni (85. ábra).

\[\lambda = \frac{1}{2} \lambda _{1} + \frac{1}{2} \lambda _{2} \]

A képletben \(n \) az elemek száma

\[\lambda _{1} = \frac{\lambda _{2}}{2} \]

\[\lambda _{2} = \frac{\lambda _{1}}{2} \]

ähhoz

\[\lambda _{1} \] az egész röd teljes hálózat hossza.

\[\lambda _{2} \] az összesen keresztszemetzett tehetsélességi sugara a szabad tengelyre vonatkozóval, \(\lambda _{1} \) a rödelem rövidebb hosszával, vagy hosszúbbá tett megfelelően technikai előírások szerint hálózat hosszával, \(\lambda _{2} \) a rödelem keresztszemetszet tehetsélességi sugara arra a súlyponti tengelyre vonatkozóval, amelyre mérsékelt az elem hálózatának veszélye fennáll.

4.23 Küzpontos nyomásra igénybe vett szerkezeti elem (röd, oszlop) vizsgálata során az alábbi feltételek kell kielégíteni:

\[N_{H} = \frac{N}{N_{H}} + \frac{M}{M_{H}} = \sigma_{sh} \]

B képletben

\[\sigma_{sh} \] a XL. táblázat 1. sorában a rostokkal párhuzamos készletben sorban a rostokkal párhuzamos készen hajlamos nyomásra előírt hatékosítást, \(N_{H} \) és \(M_{H} \) az egyéndíjság legmagasabb mérsékletű nyomáserő és hajlóképesség.

\[\lambda_{1} \] a készletben nyomott rödön a legnagyobb kacsisági tényezővel a 4.22 pont szerint számított hatékojára.

\(\lambda \) pedig a röd hasznos keresztszemész tényezője.

4.24 Hajlókészlet igénybe vett elölüdi összetett szelvényű rödönél (86. ábra), ahol a nyomást felvétel szerint szabályozott hajlókészlet, \(\lambda_{1} \) és \(\lambda_{2} \) az egyéndíjság legmagasabb mérsékletű nyomáserő és hajlóképesség.

4.23 Nyomott rödön (oszlopok) bázisszélesztések hatékojára.

\[N = 0.8 \sigma_{sh} F \]

Képletből kell számítani, ahol

\(\sigma_{sh} \)
4.26 Beéros kötés határigénybevételét lehetőleg kisérletek alapján kell megállapítani. Ha kísérleti adatokat nem állanak rendelkezésre, akkor a határigénybevételek a 4.21 pontosan megadott határfeszültségek alapján kell kiszámítani.

A bekötődő rétegegysével párhuzamosan egymás mögött legfeljebb 3 réteg (gyártási szint) alkalmazható. A határigénybevételek csökkennek tényező 4 betűnél 0,3 két betűnél 0,8.

A betűs kötés határigénybevételét fordított erőáldás esetében mind nyíltan, mind palástnyomásra az alábbiak szerint csökkentve kell számításba venni:

\[N_{ef} = \frac{N_{ef}}{q} \]

ahol \(q \) csökkentéstényező értéke az erő és a rostok irányában (rödtangénya) hajlászgődést (\(a' \)) függően a XLV. táblázat szerint kell felvenni.

XLV. táblázat

<table>
<thead>
<tr>
<th>(a')</th>
<th>0</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q)</td>
<td>1,00</td>
<td>0,85</td>
<td>0,80</td>
<td>0,75</td>
<td>0,65</td>
<td>0,55</td>
<td>0,50</td>
<td>0,45</td>
</tr>
</tbody>
</table>

4.27 Csavarköztes esetében a rostokkal párhuzamos határigénybevételei mind a palástnyomás, mind a csavartajítás szempontjából ki kell számítani, s e két érték közül a kisebbnek kell a mértékadó igénybevételtől összehasonlítani.

4.271 A palástnyomás és a csavar hajlászgődés szempontjából a határigénybevételek alapértelmezve a XLVI. - kisérletek alapján észleltetett - táblázat szerint kell kiszámítani.

A képletben szereplő \(a, b, c' \) méretek a 87. a, b, c ábra értékelése szerint cm-ben kell a képletbe helyettesíteni.

A csavart mind palástnyomásra, mind hajlászgődés meg kell vizsgálni, a szélső és a középső fábra vonatkozólag egyszerű, a szélső kisbédei határigénybevételek közel a legkisebb akadályozó.
4.274 Ha húzott elem illesztése az erő irányában háromnél több csavarral készül, akkor az illesztés határ-
egénybevételét annyian 2½%-kal kell csökkenteni, amennyi az erő irányába erő csavarok esetén (pl. 5 csavar
észetében 10%-kal). Hazánk több csavarral azonban az erő irányában teherbírás szempontjából figyelembe venni
sem szabad.

Ugyanezek az előírások érvényesek nyomott elem illesz-
téseire is, ha az erő csavarokkal kell átnézni.

4.275 Összkádások, padlók kőrhatékonyszezeti fóhuz
való csatlakozásánál a csavar határéghenybevételének az egyének-
ként számított értéke 70%-a. Ha azonban a kőrhatékonysze-
zetes fóhuz (88. ábra) d d szélességében is van lapulód, akkor a
határéghenybevétel csökkenteni nem kell.

4.28 Szegény hatóságok és (szak pufafánál alkalmazható) a
határéghenybevételt az erő iránytírat függetlenül mind pályát
nyomás, mind a szeg hatállása szempontjából kell számítani,
és ezek közül a kisebbet kell a mértékadó éghenybevétel
összhasonlítani.

4.281 Pályajátszmás és a szeg hatállása szempontjából a
határéghenybevételől kísérletek alapján megállapított:
állítástba veendő alapértékeket a XLVIII. táblázat tartalma
 meg.

A táblázatba a 3. a zöldégyező cm-ben, a 5 a 2.89
abla szerinti méret cm-ben.

XLVIII. táblázat

| Az ígéretvétel képző

| Palacknyomás | Hajtási

| hatással | hatással | hatással |

| a határéghenybevétel | értéke | a határéghenybevétel | értéke |

| Symmetrikus erősítő esetében | 300 | 600 | 600 |

| Aszimmetrikus erősítő esetében | 50 | 200 | 200 |

| 120 kPa | 560 kPa | 60 kPa | 210 kPa |

| a határéghenybevétel | értéke | a határéghenybevétel | értéke |

| Symmetrikus erősítő esetében | 300 | 600 | 600 |

| Aszimmetrikus erősítő esetében | 50 | 200 | 200 |

4.3 NYOMOTT ÖVEK OLDALIRÁNYÚ MEGTÁMAZÁSA

Tolás hosszban oldalirányú kihajlás ellen nem biztosított tartó nyomott övé a méretezésnél figyelembe
veet kihajlásai alak nullapoltnál. Ill. a rácsos érték óvatos úton csomópont (90. ábra), az egyéb vizeses erő-
könk (pl. szilárdra) kívül — ha pontosabb számítás nem készül — keresztirányban mind befelé, mind közeleb
működő ek "3" érték erőt fenntartó az alábbi képlet szerint:

\[c = \frac{\alpha}{N} \]

5. A MEGTÁMAZÁS ÉLENKÖZÉSE

5.1 Főtartó és 5.0 m-nél nagyobb támaszködből tartók számított lehajlása a B. füzetes 2.21 pont szerinti
dizinosis (a) és a 3.2 pont szerinti biztonsági (b) és a rendelkezésre álló terület (c) értékei különböző esetek területé
alatt nem lehet az alább megadottaknál:

a) tömör, szegény, betesz és enyhezet taroló, valamint
fezsélűvékenyeken

b) rácsos taroló és függőszeművéken

5.2.2 Fényszőlőben: a tartó támaszködése, új taroló, a lehajlás számítására azt az összekötések utánkeresését
 és a fa sugárzását figyelemmel kívül kell hagyni.

Tömör tartók lehajlásának számításához egyszerűsítésekkel megengedhető olyan egyenletben meg-
öszö termelésére való számítás, amely ugyanakkora legnagyobb nyomástot okoz, mint a m, n és c néhány
és közvetlenül megfelel a tartó erőforrástól. A lehajlás általában a teljes (tehát az ékek, betesz, csavarok által okozott gyengés nélküli) keresztkon
aszereplő terület alapján lehet számítani.

Kéfés (bőrézettke vagy területéből kapcsoló) növekedés keresztirányú tartó lehajlásának a tehetetlen-

ség nyomástot \(1 = 0,71 F_a \) képlettel kell kiszámítani, ahol \(F_a \) a homogénnek tekintett teljes keresztkonse
stal számítás tehetetlenségi nyomástot.

Tömörkenos szegény tartók lehajlásának számításához az övek tehetetlenségi nyomástot a 3.44
pont szerinti biztonsági érték nélküli számításhoz kell számítani. Szegény guruló tartók lehajlásának
számításánál a guruló tehetetlenségi nyomástot a 30%-a ho vele való forrás.

5.2.2 Ha fahéjakban a főtartók szerelési tömörítését a szerkezet kialakítása lehetővé tevő, a teherfeszültes
-

5.2.3 A tompasztaló lehajlás 100 m-nél nagyobb támaszködből a 3.3 pont szerinti biztonsági érték a

5.2.4 Több esetben a 2.6 pont szerinti biztonsági értéke (guruló tartó a 3.3 pont szerinti biztonsági érték)

5.2.5 A tompasztaló lehajlás 100 m-nél nagyobb támaszködből a 3.3 pont szerinti biztonsági érték

5.2.6 A tompasztaló lehajlás 100 m-nél nagyobb támaszködből a 3.3 pont szerinti biztonsági érték

5.2.7 A tompasztaló lehajlás 100 m-nél nagyobb támaszködből a 3.3 pont szerinti biztonsági érték
Szerkesztők tervei az A fejezet 2. pontjában megadott adatokon felül még azokat a különleges kiviteli szempontokat is elő kell írni, amelyek azok esetén a szerkezet szerinti működésének biztosításához elengedhetetlenül szükségesek.

Ilyen különleges kiviteli szempontok pl. a következők:

- A terárszerkezett összes elemeinek munkapadon terv szerint úgy kell összeállítani, hogy az egyes szerkezeti részekben az összeszerelésből mellékeléssel támogatottak, és a projekt által megadott ütemezést kövessék;
- Az összeszerelés során a munkapadon, a tervezésben is megadott ütemezést kövessék, és a munkapadon szükség esetén a terárszerkezet nevezzettel és ütemezéssel kell felrajzolni.

A terárszerkezetek összes elemét munkapadon terv szerint úgy kell összeállítani, hogy az egész szerkezet szerinti ütemezést kövessék a terárszerkezeteknek és a munkapadon a terárszerkezet és összeszerelés során megadott ütemezést kövessék. Az illetősítés és cremoni pontos csatlakozások csavarúlyiak, a terárszerkezetekkel összefüggő ütemezést kövessék.

Az ütemezést minden terárszerkezetnek a munkapadon és a tervezésben is megadott ütemezést kövessék.

6. GERENDA-TÁRTÓK

Gerendátartók szereplői terárszerkezetek gondoskodásának a legnagyobb jelentőségét kereszteszetekben és annak költségeinek - sokszorott a biztosítani a kereszteszetek védelme szükséges és azok (pl. kirakó) gondoskodása beépítéshez, a terárszerkezetek eladásának terén keresztül kerüljön.

Szerkezet energia erőforrását hozzáférhető tartók gerendánézés alatt legálisan két reagáló gázot kereszteszet sorozattal helyettesíthető különböző csatornákon.

Környező merevleti és a gerenda csatlakozási alatt 55° legyen, de 30°-nál kisebb nem lehet (78. és 79. ábra).

Deverezések nélkül gerendátartók hozzáférhető tartókon - erőforrások kapcsolását kivételével - kétük néhány kisebb ütemezést kövessék.

6.3 TÁRTÓCÉL

Rászárad kereszteszetének általánosan 50 cm-nél, vastagsága pedig 5 cm-nél, széleszet vagy egyenes szerkezetek leírásának készítése 20 cm-nél, vastagsága pedig 2.4 cm-nél kisebb legyen. Többere zselvények esetében ezek a minimális méretek az egyes elemekre vonatkoznak.

Rászárad lehetőleg középponton, a luborai vonalak mezeőpontjaiban csatlakoznak. Ha ez az nem biztosítható, a különösügyek az ütemezéstől figyelembe kell venni.

6.4 NYOMOTT RUDAK

Több részben álló nyomott rudak esetében az egyes különálló rúdcsereket a végükön összekötő fakkal, azokon kívül teljes hosszukban rászáradával vagy legalább a harmadában összekötő fakkal kell elállni. Az összekötő fák 6 é 18 cm szélességű rúdcsere esetében egyszerre elhelyezett, legalább két csavarral, 18 cm-nél nagyobb szélességű rúdcsere esetében pedig két sorban elhelyezett, soroként legalább két két csavarral kell összekapcsolni. A rászárad távolsegét úgy kell megállapítani, hogy \(\lambda = 0.7 \lambda _r \) de emellett minden esetben 50-nél kisebb legyen.

H. Faszzerkezetek

136

6.5 KAPCSOLATOK, ILLESTETÉS

A rostokra merőleges, vagy fordított ható oly hűtőerők felvétéséről, amelyek a fának felhasználásához vezethetnek, megfelelő módon gondoskodni kell (pl. csavarokkal, mint a 91. ábrán).

Az illesztéseket lehetőség oda kell helyezni, ahol a kereszteszetet eredetileg nincs kihasználva, Hajlócsarnok táróval az illesztés a nyomott világtartó közepétől nyomott rudakkal a mágnesztő csomópont középpel legyen.

Nyomott rudak is nyomott illesztésen által elrendeződést és mérési beavatkozástól, vagy más illesztőelemeket kell alkalmazni, amelyek az illesztés két rétegnek egymáshoz viszonyított helyzetét biztosítsák. Ha az illesztés nem lehet csomóponton középleve, az illesztőelemek tehetetlenségi nyomótávolságának legalább a nyomott rúd elhelyezését és ellenőrzését biztosítsák.

Rudak illesztésénél az illesztések fedő fáraikat úgy kell elhelyezni, hogy azok edényon élvelegíthetők az illesztőrésszel egybevágással egybe eső északi és északi fák egyenlő mélységével. Ilyen esetekben az egyes hosszak létrehozását közelíteni a kapcsolóelemek, amely szükséges az átszoruló erő kibírás részlet véghez, a kisebbik rész 1.5-szereseire kell mélyítődnie.

Anyagkészlet, valamint csavarozott kapcsolóelemekkel együtt alkalmazott más kapcsolóelem (pl. szegély) az erőtanárt számításnál nem vehető figyelembe.

6.5.1 ÁCSKÉTÉSEK, ADÓSZEDEVERÉS KÖTELEZÉS

Beavatkozás esetében a hődiffúzió szabad a terén végzéséből. A terárszerkezet általában egyenletes szélességű a csavarokkal összekapcsoló illesztéshez, és a csaverek elhelyezését és a magasságát legfeljebb 1/5-re lehet. A csavaros fáraik szerint a csavarnak legalább 1/5-es részét legyen. A hozzáfoly meg lehetővé tétele, hogy a csavarokkal összekapcsolassyé legyen.

A csavarnak beavatkozások, mesterségesen vagy mesterségesen összekapcsoló illesztéshez 5 cm legyen.

Lapállások, csavarok, illesztések és csukló felületeit gondosan, terv szerint kell megmunkálni és összeszületeni.

6.5.2 BETÉTES KÖTELEZÉSEK

Beavatkozás esetében a hődiffúzió szabad a terén végzéséből. A terárszerkezet általában egyenletes szélességű a csavarokkal összekapcsoló illesztéshez, és a csaverek elhelyezését és a magasságát legfeljebb 1/5-re lehet. A csavaros fáraik szerint a csavarnak legalább 1/5-es részét legyen. A hozzáfoly meg lehetővé tétele, hogy a csavarokkal összekapcsolassyé legyen.

A csavarnak beavatkozások, mesterségesen vagy mesterségesen összekapcsoló illesztéshez 5 cm legyen.

A beavatkozásokat a csatlakozást előidéződés után szabad terv szerint helyezni beépítéshez.

6.5.3 CSAVARKÉTÉSEK

Teherhordó csavarok átmérője 12 mm-nél (1/2”) kisebb nem lehet. Pásztorcsavarok átmérője legalább 10 mm (3/8”) legyen.

A csavarok, ill. csavarzsyat és csavarzsyafalazatot, amelyek a csavarok képességét legyen, 3,5-szoros átmérője legyen 91. ábrán.
Csavarok legkisebb távolsága a rostokkal párhuzamos irányban egymással és a szerkezeti elem végétől a csavarátmérő hosszszáma, de legalább 10 cm, a rostokra merőleges irányban egymással legalább 3,5 d a fa szeli elől legalább 3,5 d legyen, ahol d a csavarátmérő (93. ábra).

6.54 Szegezett kötések
Keménytű szegezett szerkezetek félhasználói általában nem szabad. Körkéreszesmetszetű fák egymás közötti erősítődő kapcsolatáért szegézezzet közés nem alkalmazható. A szeg hosszút úgy kell megválaszthatni, hogy az utolsó felészegzendő fába — az összeszegzett elemek 2%-nyi keresztorpni dagadása is figyelembe véve — legalább 5 d mélységre nyújtsék be (94. ábra). A szegke egymástól és a széllektól való távolsága (95. ábra): a) Az erő irányában a szegke egymástól való távolsága
\[
2,5 \, d \leq t \leq 15 \, d
\]
as szegke elem végétől a legutolsó szeg távolsága
terhelés szélétől \(t_1 \leq 12 \, d \)
terheléslen szélétől \(t_2 \leq 6 \, d \)

Egy szegzett kötés legalább 4 szegből álljon. A szeg részére előirás alkalmazni 6 mm átmérőig nem kell. Ennél vasagabb szeg esetében az előirás átmérője 0,9 d legyen.
6.55 Ragasztott kötések

Ragasztott kötéseket úgy kell szerkeszteni, hogy a ragasztott felületre mérsékelés irányban ne lépjön fel a ragaszkodási párhuzamos erő 1/4-ától nagyobb húzásig.

Az összegyűjtett részek rostjai lehetőleg egymással párhuzamosak legyenek.

Ives, több részből összefűzött szerkezeteknél a gőztűzet sugár legalább 500 a legyen, ahol a a legvastagsabb szerkezet elem vastagságát jelenti.

Ragasztott szerkezetek készítésében csak ilyen szerkezetek kivitelezésében jártas szakemberrel és megfelelő felszereléssel rendelkező üzemek végezhetik. A berendezések közé tartoznak a kettő időtartamig megfelelő nagyságú nyomás kifejtő berendezések, a ragasztott felületek megdolgozásához szükséges és alkalmas gépek, megbízható pontosságú fadőrségmérő berendezések, mesterséges faszáritásra berendezett telep és jól fűtethető műhelyek.

Ragasztási munkálatoknál csak nagy gyakorisalal rendelkező szakmunkásoknak szabad végezniük.

Különös figyelmet kell szentelni a ragasztott felületek előkészítésére és azok különösen gondos leszűrőlékire.

A ragasztandó felületek különféle esetben szorosan legyenek, azokat teljesen tisztán kell tartani és rajtuk a legnagyobb egyenletlenség — különleges ragasztóanyag kivételével — csak legfeljebb 0,5 mm magas vagy mély lehet.

A felhasználó ragasztóanyag tulajdonságainak vizsgálatára és ellenőrzésére annak felhasználása előtt próbaragasztható kell végezni. Az anyagok nedvesség tartalmát mértőműszerrel (pl. elektromos nedvesség-mérővel) ellenőrizni kell.

A ragasztásra kifejezetten nyomás egyenletes és folytonos legyen. A nyomást legnagyobb rugós vagy hidraulikus száztól, vagy ezekhez hasonló szerkezetekkel előállítani. A környező levegő hőmérsékletére a nyomás ideje alatt nem lehet +15 °C-nál alsóbbabb.
I. ANYAGOK

1.1 ACÉLBETÉT

1.1.1 Feszített betonszerkezetek megfelelően 2.5—6.0 mm átmérőjű huzaljának akadályozása általában az MNOSZ 5730 szerinti, hidézések gépekra előírt minőségű huzalt és pattintózott betonszel. Etelő elérő minőségű (más átmérőjű, más szilárdságú vagy más eljárással gyártott) acélbetétek csak a KPM engedélyével és ezen engedélyben meghatározott feltételek szerint szabad a beton feszítésére használni.

1.1.2 Feszített betonszerkezetekben, vagy azon belül egyéb lemezfelületű különféle vasbeton szerkezetekben használt olyan acélbetétek anyagára, amelyeket nem feszítenek meg, az F. fejezet 1.1 pontjának előírásai szerintiaknak kell lenniük.

1.1.3 A feszítőedág acélhuzalokat lehetőleg a műfénkben kell minőségileg acélból.

1.2 KÖTÖANYAG

1.2.1 Feszített betonszerkezetek betonjának közönség az MNOSZ 4702 Á szerinti 600-as jelű cement. Gyengebb minőségű cementet feszített betonszerkezettekhez alkalmazni nem szabad.

1.2.2 A feszített betonszerkezetekhez felhasznált cement minőségét a beépítés előtt ellenőrizni kell.

1.2.3 Ha a cement vizsgálata három hónap után előbb történik, mint a beépítés, a vizsgálatot követően a felhasználás előtt meg kell ismételni. A cement vizsgálat az alábbiak szerint kell végrehajtani.

1.2.4 Ha a felhasználásra kerülő cement mennyisége 30 t-nál kevesebb, minőségének ellenőrzéséhez elképzelhető cementpróba, a helyszíni költségpénz és a térfogatának beértesítési határideje, a működése, a legutóbbi vizsgálati beértesítési határideje és a működési határidőt a próbát nem szabad használni. A próbát az MNOSZ 553 szerint kell elvégezni. A próbát az MNOSZ 553 szerint kell elvégezni. A működési határidőt a próbát az MNOSZ 553 szerint kell elvégezni. A próbát az MNOSZ 553 szerint kell elvégezni.
1.232 Ismeretlen helyről származó vagy olyan cementet, amely hibás szállítás vagy raktározás miatt későbbi elváltóztatási személyzet (csomóoszbad, körgezsedet), feszített betontervezőknek felhasználni nem szabad.

1.244 Csak olyan készforgolyos, vizstabilizáló fokozott koncentrációnálát (plasztifikálok) anyagokat szabad előírni, amelyeknek az alkalmazott cimenttel való használhatóságát és előre készült laboratóriumi vizsgálatok igazolják.

Ezen anyagok mennyiségére vonatkozóan szaporodás be kell tartani a laboratóriumi vizsgálatok során megállapított felület határát.

Ha a beton közegyorsítása gázömlésnél vagy elektromos fűtésnél történik, akkor az alkalmazandó cement ilyen oldalra megfelelő volatilis előre készült próba újra meg kell gyártani.

1.3 ADALÉKANYAG

Feszített betontervezőknek felhasználható adalékanyagok általánosan az F fejezet 1.3 pontjában előírtnak mérésének, az alábbi módon különös kiegyensúlyozásokat elvállalnak.

1.3.1 A feszített betontervezőknek felhasznált adalékanyagok homogenizálását együttes lászap és agyagszíntartalmának nem kell haladni a homogenizáció 3%-nál, a kavics pedig, az anyagot vagy ízmutatót nem kezelni.

1.3.2 Feszített betontervezők által használt adalékanyag legnagyobb személyfokzlást a beton legsebesebb vasfajtája szerinti mértékeken, ill. 30 mm-nél nagyobb általánosan nem lehet. Nagymértékű utóírásosbeton tervezőtervezőknek az utalható méreti 40 mm lehet.

Ilyen felül a körökből különböző környezetben alkalmazott beton és a legnagyobb személyfokztatás az acéllemezhez kötött fizesztés tényezője nem lehet.

1.3.3 Feszített betontervezők adalékanyagok személyfokzlatását előző események után újra kell megállapítani. Feszített betontervezők adalékanyagok általánosan az előírt összetétel szerint leírható.

A folytonos személyfokozó adalékanyag finomított és egyéb frakciók a legnagyobb személyfokzat és a kész m²-új cement tartalmától függően az L. táblázatban megadott határértékek között esnek.

<table>
<thead>
<tr>
<th>Személyfokozat</th>
<th>Határértékok</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. táblázat</td>
<td></td>
</tr>
</tbody>
</table>

Ciment 450 kg/m³

<table>
<thead>
<tr>
<th>D mm</th>
<th>30</th>
<th>20</th>
<th>15</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>1,0</td>
<td>14</td>
<td>18</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>2,0</td>
<td>26</td>
<td>32</td>
<td>26</td>
<td>16</td>
</tr>
<tr>
<td>3,0</td>
<td>44</td>
<td>54</td>
<td>41</td>
<td>32</td>
</tr>
<tr>
<td>4,0</td>
<td>60</td>
<td>75</td>
<td>61</td>
<td>50</td>
</tr>
<tr>
<td>6,0</td>
<td>75</td>
<td>90</td>
<td>70</td>
<td>50</td>
</tr>
</tbody>
</table>

| Abramos- mondás | 5,0 | 5,90 | 5,90 | 5,60 | 5,45 | 5,15 | 5,10 | 4,80 | 4,65 | 4,35 |

Ciment 400 kg/m³

<table>
<thead>
<tr>
<th>D mm</th>
<th>20</th>
<th>15</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1,0</td>
<td>10</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>2,0</td>
<td>20</td>
<td>26</td>
<td>20</td>
</tr>
<tr>
<td>3,0</td>
<td>32</td>
<td>40</td>
<td>32</td>
</tr>
<tr>
<td>4,0</td>
<td>48</td>
<td>54</td>
<td>41</td>
</tr>
<tr>
<td>6,0</td>
<td>60</td>
<td>70</td>
<td>50</td>
</tr>
</tbody>
</table>

| Abramos- mondás | 4,60 | 4,60 | 4,05 | 5,75 | 5,55 | 5,35 | 5,25 | 4,90 | 4,50 |

L. táblázat

<table>
<thead>
<tr>
<th>D mm</th>
<th>20</th>
<th>15</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1,0</td>
<td>10</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>2,0</td>
<td>20</td>
<td>26</td>
<td>20</td>
</tr>
<tr>
<td>3,0</td>
<td>32</td>
<td>40</td>
<td>32</td>
</tr>
<tr>
<td>4,0</td>
<td>48</td>
<td>54</td>
<td>41</td>
</tr>
<tr>
<td>6,0</td>
<td>60</td>
<td>70</td>
<td>50</td>
</tr>
</tbody>
</table>

| Abramos- mondás | 4,60 | 4,60 | 4,05 | 5,75 | 5,55 | 5,35 | 5,25 | 4,90 | 4,50 |

1.4 VÍZ

Feszített betontervezőknek felhasználható víz feleljen meg az F fejezet 1.4 pontjában előírtaknak.

1.5 BETON

1.5.1 Előírásosbeton betontervezőknek legfeljebb 400 kg/cm³, utóírásos betontervezőknek pedig legalább 400 kg/cm³ 28 napos kockaszárídlásig betont kell előírni.

A tervek és az erősítési számításban a beton előírt 28 napos kockaszárídlásig kell számítani. A beton mindkét oldalán 280, 400 szó. A rájegyző által megkívánt 28 napos kockaszárídlásig kg/cm³ egyéb egységben.

1.5.2 Az előírt kockaszárídlásig előírtnak kikísérletetes, megfelelő személyfokozatú adalékanyag alkalmazásával, a beton erősítési és gonosz törésértékével, alacsony vízszint-tőkészeivel, de legfeljebb kévez cement felhasználásával kell biztosítani.

Feszített betontervezők tévedésről támogatja cementtartalma kész kibővítésenként legalább 350 kg legyen, és csak kivételes esetben lehet 450 kg-nál több.

1.5.3 A beton személyfokozatának kiválasztásánál a megegy közös 28 napos kockaszárídlásig kívül a betéttartó megfelelő volatíva is kitűnik kell lenne. Ezért - ha szükséges - a huzalok elszállítása és megfelelő személyfokozatban az alapvetően betonozásból és személyfokozatban az adalékanyag legnagyobb személyfokzatát igazolja, hogy a betonok megfelelő volatíva és hatékonyak.

1.5.4 A beton előírások során olyan gépi eszközök és munkamódszerek (keresztvágás, színtávolítás) kell alkalmazni, hogy a beton előírás és egyenlőség mindkét oldalán kölcsönös törésérték és állóírású betonok biztosítva legyen.

1.5.5 A feszített-eikből csak akkor szabad a betonozást megtéríteni, ha a beton anyagából visszavágó folyosó már elhúzott és az alapvetően megfelelő volatíva és hatékony összekötő és felületől távoli hiány nincs.
2. AZ ERŐTANI SZÁMÍTÁS SORÁN FIGYELEMBE VENNDŐ TERHELŐ ERŐK ÉS MOZGÁSOK: ALAKVÁLTOZÁSI JELLEMZŐK

Fejlődés: betonszerkezetek erősítő számítás során a B, fejezet 2. pontjában előírt terhelés és mozgásokat kívül az alábbiakra kell figyelemmel lenni:

1. Fejlődés szerinti hőmérsékletváltozás általános a B, fejezet 2.1.4. pontja szerint kell figyelembe venni.

Ha az előrefeltöltött betonszerkezet gyártási során a beton hőfoknál mesterlegényén érlelik, de ebben a helyzethez, hogy ezzel együtt a lehetséges pontok távolsága nem változik (pl. a futószemélyek főfellel, a légszokványok változását, a futópadok megfelelő hőmérsékletváltozását.)

2. Fejlődés szerinti különösen nagyobb a B, fejezet 2.1.4. pontja szerint kell figyelembe venni:

2.2. Különlegesség az adott feltételek alapján, hogy a hőfoknál mesterlegénye a hőmérsékletváltozás általános a B, fejezet 2.1.4. pontja szerint kell figyelembe venni.

A hőmérsékletváltozás az adott feltételek alapján, hogy a hőfoknál mesterlegénye a hőmérsékletváltozás általános a B, fejezet 2.1.4. pontja szerint kell figyelembe venni.

2.3. Ha a fejlődés közben feltételekre, hogy a hőfoknál mesterlegénye a hőmérsékletváltozás általános a B, fejezet 2.1.4. pontja szerint kell figyelembe venni.

2.4. Az adott feltetelek alapján, hogy a hőfoknál mesterlegénye a hőmérsékletváltozás általános a B, fejezet 2.1.4. pontja szerint kell figyelembe venni.
Közeltő számításban az alábbi tájékoztató értékeket lehet figyelembe venni:

\[
E_{\text{ac}} = 500,000 \frac{K}{x+300} \quad \text{watt/m}^2
\]

képletből kell számítani, ahol \(K\) a beton kockázatossága kg/m\(^2\) egységében.

A régulamassági tényezők a megadott 28 napos kockázatosság alapján ilyen módon meghatározott értékek a fejezetben szereplő betonoknak — a továbbiakban szabványos betonok — esetében, kerek értékek.

Előredefinitált szerkezeteknél különleges betonszabályzatok ill. egyenlőttúbb köbelet és B 400 ill. B 560 mindig a betonok esetében az adatbázisban beton nagyság szerinti tényezők és a régulamassági tényezők meghatározása.

\[
E_{\text{ac}} = 500,000 \frac{K}{x+300} \quad \text{watt/m}^2
\]

kiemelt abban a következő:

- B 28-os beton esetében: 320 kg/m\(^2\)
- B 400-as beton esetében: 400 kg/m\(^2\)
- B 560-os beton esetében: 550 kg/m\(^2\)

Eredményes szerkezeteknél különleges betonszabályzatok il. egyenlőttúbb köbelet és B 400 ill. B 560 mindig a betonok esetében az adatbázisban beton nagyság szerinti tényezők és a régulamassági tényezők meghatározása.

\[
E_{\text{ac}} = 500,000 \frac{K}{x+300} \quad \text{watt/m}^2
\]

kiemelt abban a következő:

- B 28-os beton esetében: 320 kg/m\(^2\)
- B 400-as beton esetében: 400 kg/m\(^2\)
- B 560-os beton esetében: 550 kg/m\(^2\)

2.71 Külső általános haténység alapján felületi betonszabályzatok hatékonyságától függően megadott értékeket meghatározott ezt a 2.71 pontban meghatározott értéket mértanyagban és mértanyagban önállóként számított.

2.73 Ha a szereke tetőalakításának vizsgálatára során a régulamassági tényezők változó, kell a vizsgálat helyszínében vallott általános felületi betonszabályzatoknak megfelelően venni.

\[
E_{\text{ac}} = 500,000 \frac{K}{x+300} \quad \text{watt/m}^2
\]

kiemelt abban a következő:

- B 28-os beton esetében: 320 kg/m\(^2\)
- B 400-as beton esetében: 400 kg/m\(^2\)
- B 560-os beton esetében: 550 kg/m\(^2\)

3. A terhelési paraméterek során figyelembe vonó méretek és feltevések

Közönséges hidak és bővítők terhelésére hiteles, hűséges, érzékelhető és javaitól függően mérhető.

Az általános haténység alapján felületi betonszabályzatok hatékonyságától függően meghatározott ezt a 2.71 pontban meghatározott értéket mértanyagban és mértanyagban önállóként számított.

2.71 Külső általános haténység alapján felületi betonszabályzatok hatékonyságától függően megadott értékeket meghatározott ezt a 2.71 pontban meghatározott értéket mértanyagban és mértanyagban önállóként számított.

2.73 Ha a szereke tetőalakításának vizsgálatára során a régulamassági tényezők változó, kell a vizsgálat helyszínében vallott általános felületi betonszabályzatoknak megfelelően venni.

\[
E_{\text{ac}} = 500,000 \frac{K}{x+300} \quad \text{watt/m}^2
\]

kiemelt abban a következő:

- B 28-os beton esetében: 320 kg/m\(^2\)
- B 400-as beton esetében: 400 kg/m\(^2\)
- B 560-os beton esetében: 550 kg/m\(^2\)

4. A terhelési igazolása

A közönséges hidak és bővítők terhelésére hiteles, hűséges, érzékelhető és javaitól függően mérhető.

Az általános haténység alapján felületi betonszabályzatok hatékonyságától függően meghatározott ezt a 2.71 pontban meghatározott értéket mértanyagban és mértanyagban önállóként számított.

2.71 Külső általános haténység alapján felületi betonszabályzatok hatékonyságától függően megadott értékeket meghatározott ezt a 2.71 pontban meghatározott értéket mértanyagban és mértanyagban önállóként számított.

2.73 Ha a szereke tetőalakításának vizsgálatára során a régulamassági tényezők változó, kell a vizsgálat helyszínében vallott általános felületi betonszabályzatoknak megfelelően venni.

\[
E_{\text{ac}} = 500,000 \frac{K}{x+300} \quad \text{watt/m}^2
\]

kiemelt abban a következő:

- B 28-os beton esetében: 320 kg/m\(^2\)
- B 400-as beton esetében: 400 kg/m\(^2\)
- B 560-os beton esetében: 550 kg/m\(^2\)

4.1 ZSÍRÁS

A közönséges hidak és bővítők terhelésére hiteles, hűséges, érzékelhető és javaitól függően mérhető.
A készlet szerkezetét és jellemzőit a következőképpen lehet azonnal karakterizálni:

1. A szabadság és a készlet előrehaladása a készlet értékének növekedése.
2. A készlet kibontakozása a készlet értékének csökkenése.
3. A készlet bevétele a készlet értékének növekedése.
4. A készlet kibocsátása a készlet értékének csökkenése.

A készlet jellemzőit és időjáratokat a következőképpen lehet vizsgálni:

1. A szabadság és a készlet előrehaladása a készlet értékének növekedése.
2. A készlet kibontakozása a készlet értékének csökkenése.
3. A készlet bevétele a készlet értékének növekedése.
4. A készlet kibocsátása a készlet értékének csökkenése.

A készlet jellemzőit és időjáratokat a következőképpen lehet vizsgálni:

1. A szabadság és a készlet előrehaladása a készlet értékének növekedése.
2. A készlet kibontakozása a készlet értékének csökkenése.
3. A készlet bevétele a készlet értékének növekedése.
4. A készlet kibocsátása a készlet értékének csökkenése.
Az erősítés hosszában a feszültségeket stb. felületi feszültségi állapot felületelezésével is lehet kiszámíthatni. E számítás során — ha pontosság vizsgálat nem készül — gyakorlatilag igazol, az egyenlőségi felületeket kielégítő, egyszerűbb felületek is tehetők.

4.5.5 Az előző pontok szerint megállapítható nyírós és húzós, ill. nyomófeszültségekkel számított főfeszültségek értékét és irányát az alábbi képletekkel lehet kiszámíthatni:

\[
\sigma_{r+} = \sigma + \sqrt{\left(\frac{\epsilon}{2}\right)^2 + \epsilon^2}
\]

E képletekben \(\sigma\) a hálózásból, központos vagy különös nyomásból, ill. húzásból származó normálfeszültség, \(\epsilon\) pedig a nyírósból vagy csavárból, ill. ezekből együttesen származó nyírófeszültség.

4.5.6 A 4.5.5 pont szerint számított forde húző főfeszültség értéke tehát nem lépheti túl az LII. táblázat 2/b rovatában meghatározott felületi határértékeket. Ha a forde húző főfeszültségek az LII. táblázat 2/b rovatában meghatározott határértékeket elérjük, de a 2/b rovatában meghatározott felületen túl nem lépik, akkor az összes forde főfeszültségéket, fűzetekkel, ill. acélbetétekkel és kengylésekkel fel lehet venni. Az acélbetétek lehetőleg kövessék a főfeszültség irányát.

Ha a forde húző főfeszültségek az LII. táblázat 2/a rovatában meghatározott al só határértékeket sem érik el, akkor a főfeszültségeket feltestrésze a szállító acélbetétek mennyisége általában nem kell meghatározni, kivéve azt az esetet, amikor ezen acélbetétek nélkül a szerkezet terv szerinti működése nem biztosítható.

4.6 FELÜLETI KÖTÉS

Előregisztrált szerkezeteknél a beton és az acélbetétek felületi kötésétől származó tapadó igénybevételét ellenőrizni kell. A métadék tapadásról az acélbetétek főfeszültségváltoztatásból kell kiszámítani és a felületi tapadásról az acélbetétek mérvek táblázatának 2/a rovatában ismertetett megfelelő mértékeket kell kiszámítani.

4.7 HATÁRFESZULTSÉGEK

4.7.1 Az MNSZ 5720 T szerinti különleges betonacél haslak határfeszültségeit az LII. táblázat tünteti fel.

<table>
<thead>
<tr>
<th>Aladárság</th>
<th>100 KB</th>
<th>175 KB</th>
<th>140 KB</th>
<th>120 KB</th>
<th>100 KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Átmérő mm</td>
<td>2.5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Határfeszültség kg/cm²</td>
<td>10 800</td>
<td>10 200</td>
<td>9 600</td>
<td>9 000</td>
<td>8 400</td>
</tr>
</tbody>
</table>

Nem szükséges acélbetétek határfeszültségei a folyást határozzák. Ill. a szakértőfeszültség 65%-a alapján számított értékek közül a kisebbik. (Folykaszárat alatt a 92%-os-maradó nyúlványra tartozó feszültséget kell érteni.)

Fenti határfeszültségek az acélbetétek lassú alvázátásváltásának kiküszöbölése céljából esetleg végrehajtott előterheléséből alkalmazásra létrehozhatók.

Ütőfeszültségek felületi tapadásról az acélbetétek mérvek táblázatának 2/a rovatában ismertetett megfelelő mértékeket kell kiszámítani, és a beton haslak határfeszültségát a 80 nappali kockázatlárd-ságától és a kivétlen módját független a LII. táblázat tünteti fel.

Megjegyzések:

Az LII. táblázatban megadott határfeszültségek érvényesség a 4.4 pont alatt előírt vizsgálatokon kívül a 4.1, ill. 4.2 pont alatt előírt vizsgálatok esetében akkor, ha a fűzésből felületkor, ill. a szállítás, szerelés,
5. AZ ALKALVÁTOZÁSOK ELENNÖRZÉSE

Feszített beton hídtervezetek 15 m-nél nagyobb támogató szerkezeti elemek számítása során igazolni kell, hogy a számított függőleges (leghat) és vízszintes (elhalás) alkalmazások nem lépik túl a szerkezet használatossága szempontjából még érhető méretéken. 15 m-nél kisebb támogató szerkezeti elemek alkalmazása általános nem kell kimutatni, kivéve, ha különleges (pl. üjitett falak megoldással kapcsolatban) szerkezeti vonatkozás van.

A lehalsásra vonatkozó számítások során előfordulhat, hogy a feszített hídtervezet során szükséges méretű, de általános nem tartozó elemek számítása is kötelező a szerkezet használatossága szempontjából méretében.

5.1 Feszített beton hídtervezetek esetében a biztonsági, dinamikus és rendelkezési tényleg nélkül számított hasznos teherből számított leghalász a támogatók 1/300 részét nem haladhatja meg.

5.2 A vonatkozó hídtervezetek főtermékek és ezzel együtt a pályaszakaszt erősen szorozó (építő) tömegként kell számítani.

6. SZEKERESZTÉSI SZABÁLYOK

Feszített betonszerkezetek esetében az F. fejezet 6. pontjában a feszített és előfogott betonszerkezetek esetében pedig ezen felül a K. fejezetben foglalt előírásokon (az emelési hely megőrzése, a megfelelő módjas, mérettörés) valóban kikívül a feszített leghalasztását a 1/300 részt nem haladhatja meg.

6.2.1 Feszített beton tervezetek valamennyire is mindkét gyakorlati, szakmai és építőművészi szempontból is jelentős mértékben a számítási módszerekhez kapcsolódik. A feszített szerkezetek tervezésekor tartalma mindazon, megfelelő és megfelelő leghalasztásnak minősítés, valamint a leghalasztás alapját képező műszaki feltételeket és különleges előírásokat (számkok) összefoglaló táblázatokat, illetve a szákmunka munkásságának és szükségszerűsége a munkában a mérnöki feladatokra vonatkozó mértékként adott felügyeletét lehetséges.

6.2.2 Feszített beton tervezetek tervezése során a mérések elvégzése során a mérni felügyeletet kivánalmas, hogy a mérés eredményeit leegyszerűsítsék és tájékoztassák a mérni felügyeletet.

6.2.3 Feszített beton tervezetek tervezése során a mérés eredményeit leegyszerűsítsék és tájékoztassák a mérni felügyeletet. A mérés eredményeit leegyszerűsítsék és tájékoztassák a mérni felügyeletet.
6.3 ZSALUZAT

A zsaluza vonatkozóan a K. fejezet 7.3 pontjának előírásait értelmezni kell alakozni.

6.3.1 A zsaluza tervezésével különös gondot kell fordítani arra, hogy az előírások szerinti szakaszokat, illetőleg az akadályok esetén, helyes és biztonságosan légyenek, továbbá arra, hogy a zsaluza, ill. annak egyes részei a beton szűrődésének megfelelően lehessennek, ill. élettartamukkal rendelkezzen.

6.3.2 Nagymértékű feszített betonszerkezetek zsaluza szerinti tervezése során gondoskodni kell arról is, hogy a zsaluza a feszítés előtt el nem súlyozott részen a feszítésből, ill. szugorodásból származó mozgásokat ne akadályozzák.

6.3.3 A zsaluza olyan mérésvégi esetek közé tartozik — a vibrálás, siműlés és esetleges egyéb károk alakulását befolyásoló hatásokra — csak olyan méréseiben deformálódnak, hogy az elemek terv szerinti alakját a K. fejezet 8. pontjában előírt méretarányokban, belül biztosítsák.

6.4 FESZÍTÉS

6.4.1 A szerkezet acélhuzalainak csapágyú megfeszítése esetében gondoskodni kell arról, hogy az egyes szakaszok közélegeny nyilása biztosítsa legyen. A tervezés során mindenkor fejtöltennél kell lenni a rendelkezésre álló feszítő berendezés méreitre, a kifejthető erő nagyságára, valamint a várható veszteségére.

6.4.2 A terven elő kell lenni a feszítőerő méreitre vonatkozó utasításokat is. Ha a feszítőerőnél mérési győz előre beszéltetnén +5% pontoséggel, helyesné nyilásoknál pihenő 5% pontosággal nem biztosítható, akkor a tervezés során a várható veszteségeket külön figyelembe kell venni.

6.4.3 Ha utófeszített szerkezetek esetében az alkalmazott acélhuzalok egymás után kerülnek meghúzására, a feszítés sorrendjét és méretekét a terven elő kell lenni.

6.4.4 Utófeszített szerkezeteknél gondoskodni kell arról, hogy a betonok és az acél ezőtani számításokat függetlenül alkalmazzuk akadályokkal vagy lejátszóknál.

Az alkalmazott szerelési csakikigényeinek, munkatársaságoknak ugyancsak gondoskodni kell arról, hogy a terv szerinti mozgások akadályozásával legyenek lejátszódnak.
K. Élőegyrátott szerkezetek

1. ÁLTALÁNOS ELŐÍRÁSOK

Élőegyrátottnak minősül minden olyan vasszton-, beton-, ill. fesztivit beton hídrendszer, amelynek elemek csak egészen meglévődésuk után helyezik el és építik össze végleges rendeltetésüknek megfelelő helyükön. Az élőegyrátás lehet helyszíni vagy üzem.

A hídrendszer általában akkor tervezhető élőegyrátottnak, ha ez műszaki és gazdasági szempontból nem kedvezőbben, mint a monolit szerkezet. (Monolitnak nevezzük a továbbiakban a zsaluázatban helyezett alacsony kőzetes szerkezetet.)

A tervezés előtt meg kell vizsgálni, hogy a kivitelezés végrehajtásához szükséges megfelelő képzettséggel személyzet, a kivánt minőségű anyagok, valamint a szükséges berendezések kellő időben biztosíthatók-e.

1.1 Élőegyrátott hídrendszer térképészére és műszaki megvizsgálatára e fejezetben előírásokon felül a szabálysértés okai fajtáként mindegy törvényes, amelyek ezzel ellentmondásban nincsenek.

Élőegyrátott hídrendszer létesítésével kapcsolatos berendezésekhöz (állványok, szűrók, emelő berendezések stb.) a vonatkozó szabványok és előírások mértékadók.

1.2 Élőegyrátott hídrendszer térképészése során a kéz szerkezetre — továbbiakban végleges állapota — előírt követelményekkel felügyelettel kell lenni a gyártás, szállítás, tárolás, elhelyezés (beomlás) és az elhelyezés utáni állapot — továbbiakban ideiglenes építési állapotok — követelményeire is.

1.3 A végleges állapotra vonatkozó téveket az A. fejezet 2.2 pontjában előírások szerint kell elkezdeni. E tervekből használni semmilyen változtatásokat lehet, amelynek anyagát sem kell abban az anyagot használni, amely a kivitelezéshez szükséges lehet.

1.4 Az ideiglenes építési állapotokkal kapcsolatban az A. fejezet 2.2 pontjában előírt terveket olyan részleteséggel kell kidolgozni, hogy azokból a szerkezet minden része egyértelműen kivitelezhető és elkezdenének sorrendje megállapítható legyen.

1.5 Az ideiglenes építési állapotokkal kapcsolatos terveket — ha a tervezett szerkezet megvalósításához szükséges — az alábbi részletezés szerint kell elkezdeni.

1.31 Az élőegyrátottok elemeknek, az esetleg szükséges állványzásnak és zsaluázásnak terve, valamint ezek műszaki leírása.

1.32 Az élőegyrátott elemek szállításához szükséges berendezéseknek és a szállítási technológiának terve, valamint ezek műszaki leírása.

1.33 Az élőegyrátott elemek tárolási terve és műszaki leírása.

1.34 Az élőegyrátott elemek mozgatásához szükséges berendezéseknek (pl. emelőberendezések) terve és a mozgatási technológiák terve, valamint ezek műszaki leírása.

1.35 Az elhelyezés technológiák terve, az elhelyezés utáni ideiglenes megőrzésünket, rögzítéseink, mevültéstünk, szimbiózisunkat, az esetleg szükséges állványzásnak és zsaluázásnak terve, valamint ezek műszaki leírása.

1.36 Részletes organizációs terve, amely tartalmazza az építési terület berendezését, továbbá az építés sorrendjére és időbeosztására vonatkozó részletes adatokat.

1.37 A gyártás, szállítás, tárolás, elhelyezés, összeállítás stb. egyes részvégzeteihez szükséges munkavédelmi és biztonsági előírások, valamint az ezek kapcsolatos berendezéseknek tervei.

2. ANYAGOK

Helyzettelen élőegyrátott vasszton elemekhez általában B 280, gyártági előállított beton elemekhez pedig általában B 400 minőségű beton kell előírni, és az állapotmérés és korlátozás helyzettelen élőegyrátott vasszton elemekhez B 200, gyártági előállított beton elemekhez pedig B 280 minőségű beton is előírható.

Előegyrátott beton elemekhez legalább B 140-es béton kell előírni.
3. AZ ERÖTANI SZÁMÍTÁS SORÁN FIGYELEMBE VEENDEL TERHELŐ ERŐK ÉS MOGZÁSOK ALAKÍTÁVÁNYÍTÁSI JELLEMZŐK

Az erőgyártózott szerkezet végleges állapotára vonatkozó vizsgálat során az 1. befejezet és az építőanyag-
ált függően a szabályzat vonatkozó fejezetében előírt terhelő erőket és mozgásokat kell figyelembe venni.
Az idegenlét építési állapotkra vonatkozó vizsgálatok során ugyancsak fennállnak közös előírásokban megadott terhelő erőket és mozgásokat kell figyelembe venni, az általuk kijelöltékésekkel és módszerekkel.

3.1 ÁLLANDÓ, ILL. TARTÓS JELLEGŰ TERHELŐ ERŐK ÉS MOGZÁSOK

3.1.1 Az erőgyártózott elem összülő szerinti korlátozni kell számítani, hogy a vizsgálat az elem nyugalmi vagy mozgás közbeni állapotára vonatkozik.

3.1.2 Az általunk felhasznált elem összüló szerinti korlátozni kell számítani, hogy a vizsgálat az elem nyugalmi vagy mozgás közbeni állapotára vonatkozik.

3.2 ÁLLANDÓ, ILL. TARTÓS JELLEGŰ TERHELŐ ERŐK ÉS MOGZÁSOK

3.2.1 Az építési alkatrészek terhelése a B. fejezet 2.27 pontjában előírtak szerint kell figyelembe venni.

3.2.2 Az idegenlét építési állapotokban szélterheléseként a B. fejezet 2.22 pontjában előírt szélterhelést kell figyelembe venni.

4. AZ ERÖTANI SZÁMÍTÁS ELVI ALAPJAI

4.1 TÁMÁSKÖZ

Az erőszakos számítható során a tartó támaszközének mind az idegenlét, mind a végleges állapotban átlagosnak beazonosítjuk, ill. megfogósságok esetében a szélterhelések ellenére is feltehető, hogy a szerkezetben számított megfelelően a tartó támaszközének fennállása meghatározó.

4.2 SZÁMÍTÁSBA VEHETŐ TARTÓMÉRETEK

4.2.1 A végleges és az idegenlét építési állapotokban figyelmebe vehető különböző tartómódszerek az építési alkatrészekön függően a szabályzatnak előírásainak megfelelően kell számítani.

4.2.2 Az idegenlét építési állapotban számított, helyesen készült visszabevett szerkezetek (pl. félzárók, kiegészítők) csupán akkor azzal a hozzájuk vonatkozóan valóban számítjuk, amelyben a helyesen készült beton előírt 28 napos kockazsárlási idő előtti színvonalát mértéke 80%-ot érte.

4.3 A MEGTÁMÁSÍTÁS MÓDJA

4.3.1 Az idegenlét építési állapotokban az erőgyártózott elemek függőleges irányú megtámaszását, ill. fél-
-a) A grádákból álló támaszköz során, ha a készülék az erőgyártózott elem felszakításával történik.

b) A szélesség, a tároló, az elhelyezés (beemelt) állapot vizsgálat során a mozgásból levő elem összülója — ha pontosság esetén a növekedés nagyobb a növekedésnél — a növekedésnél.

c) Az elhelyezés után állapot vizsgálat során — ha további elemek ráhelyezésére kerül sor — a már elhelyezett elem összüljön a 3.11 pont szerint kell számítani, de az utólagra ráhelyezett elem összüljön a b) pont szerint megjelenő értékekkel kell figyelembe venni.

4.3.2 Az erőgyártózott szerkezetek idegenlét víziállapotára vonatkozó vizsgálatok során az egyenlőtlen felmerületére figyelemmel kell lenni, és azt 5% hőmérsékletkülönbségnek megfelelően kell számítani.

5. A TEHERBÍRÁS IGAZOLÁSA

Előírások szerkezetek továbbiraízának igazolása mind a végleges, mind az idegenlét építési állapotokban, a 3. fejezet 3. pontja szerint, a félzárókkal figyelembevételével történik.

5.1 HATÁRJEGYBÉVELÉT

Az idegenlét építési állapotban számított, helyesen készült visszabevett szerkezetek (pl. félzárók, kiegészítők) csupán akkor azzal a hozzájuk vonatkozóan valóban számítjuk, amelyben a helyesen készült beton előírt 28 napos kockazsárlási idő előtti színvonalát mértéke 80%-ot érte.
6. AZ ALAKVÁLTÓZÁSOK ELLENÖRZÉSE

Az előregyártott szerkezetek során az épületirányító függően ebben a szabályzatban előírtakon kívül még az alábbi szempontokra is figyelemmel kell lenni.

7. SZERKEZETI SZABÁLYOK

Előregyártott szerkezetek tervezése során az épületirányító függően ebben a szabályzatban előírtakon kívül még az alábbi szempontokra is figyelemmel kell lenni:

7.1 Az előregyártott szerkezetek tervezésével kapcsolatban azt a végsőleges és az ideiglenes épületi állapotok követelményeinek egyenlőségével figyelemmel kell lenni.

7.11 Az ideiglenes épületi állapotokban az elemek (híd, előszárny) tervezett helyzetet, a megfogások helyét és módját a terveken minden esetben fel kell tüntetni, és azt is elő kell írni, hogy a kivitelezett szerkezetén ezeket hogyan kell megjelölni. Ha kis elemeknél a tásváltozású helyen történő megfogás megengedhető, ezt a terveken tisztán fel kell tüntetni.

7.12 A terveken különböző épületi állapotokban megkívánt kockázatvilágos minél az előregyártott elemekre, mind a csatolási szerkezetekre vonatkozóan elő kell írni.

7.13 Az előregyártott elemek, ill. szerkezetek tervezésével kapcsolatban figyelembe kell venni a 7. pontban a betonményekre, a vasalásra, az egészségére, a szigetelésre stb. megadott méretrendszereket.

7.14 A méretrendszereket megfelelően összegezésének elváltozása utána a kivitelezett szerkezetek adatokon kívül a kivitelezési figyelmelem a terveken külön fel kell hívni a megkívánt méretrendszereket fel kell tüntetni.

7.2 Az előregyártott elemek alkotó részek, kivitelezés, bemutatás, elhelyezés, kapcsoló-kikapcsoló szabályai, szempontjaink figyelembevételével kell megvalósítani.

7.21 Előregyártott elemeknél alkalmazható legkisebb betonmérések a következők:

- Osztópok és hasonló elemeknél (rácso tartó rádiójai, lemez-palástok) a legkisebb vastagság legalább 15 cm (98.0. ábra).

98. ábra

- min. 15 cm

- min. 10 cm

- min. 5 cm

- 98, ábra

- min. 2 cm

- 98. ábra

K. Előregyártott szerkezetek

7.3 Az alakváltózások helyzete és a megfelelő tervezett szerkezetek a kivitelezési figyelmelem a 7. pontban megadott méretrendszerekben belül biztosította.

7.22 Előregyártott elemek során a legkisebb kivitelezés, ill. a csatolási tervezett szerkezetek a kivitelezési figyelmelem a 7. pontban megadott méretrendszerekben belül biztosított.

7.4 Az alakváltózások helyzete és a megfelelő tervezett szerkezetek a kivitelezési figyelmelem a 7. pontban megadott méretrendszerekben belül biztosított.

7.3 Az alakváltózások helyzete és a megfelelő tervezett szerkezetek a kivitelezési figyelmelem a 7. pontban megadott méretrendszerekben belül biztosított.

7.5 Az ideiglenes kapcsolásiadatok lekerekített és az alakváltózások helyzete és a megfelelő tervezett szerkezetek a kivitelezési figyelmelem a 7. pontban megadott méretrendszerekben belül biztosított.

7.51 Az elemek a szerkezetek egymással vagy az általános megfelelő tervezett szerkezetek felületén találhatóak, ill. súlyozók fel. A felületen a soronkénti elemek lehetséges előírásai közvetlenül az elem elhelyezése előtt követendők.

A legkisebb falvédő légképes mélység cm-ben

- gerendánál: lemezének, bordás lemezének

- legénye (100. ábra)

\[f = \frac{5 + L}{L} \]
8. MŰSZAKI MEGVIZSGÁLÁS

Előreállított hídzekereket végleges állapotban törőző műszaki megvizsgálatára, próbakerítésére, időszakos vizsgálatra és nyilvánítására az L. fejezet előírásai szerint.

8.1 MŰSZAKI KÖVETELMÉNYEK

8.1.1 Méréstörvények

A méréstörvények az előreállított elemek felhasználási módjá, a csomópont köré és az összefűzés követelményei határozzák meg. A méréstörvényeket a terv szerinti mérésekhöz viszonyítja kell értésre, és a lényeges méréseket bármilyenre külön-külön is be kell tartani. Ha a tervben külön méréstörvény előírások nincsenek megadva, akkor az alábbi méréstörvényeket kell figyelembe venni.

8.1.1.1 A betonmérétek (vastagság, szélesség, hosszúság stb.) és az összeszerelt alsóbetétek méréseinél sorrendben az elem bármely mérésténdő cm-ben

<table>
<thead>
<tr>
<th>L (cm)</th>
<th>+A₀</th>
<th>-A₀</th>
<th>δ₀</th>
<th>+A₁</th>
<th>-A₁</th>
<th>δ₁</th>
<th>+A₂</th>
<th>-A₂</th>
<th>δ₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.10</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.20</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.30</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.40</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.50</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.60</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.70</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.80</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.90</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>1.00</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>1.10</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>1.20</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Az előreállított elemekből kinyitható kapcsolószerszínvonalak (alsóbetétek, sarok stb.) relatív elhelyezésében és töltőnyílásban használatban megengedett méréstörvény

acélkeresztüknél szárz kapcsoló esetében: ±0.2 cm
acélkeresztüknél szárz kapcsoló esetében: ±0.3 cm
acélkeresztüknél szárz kapcsoló esetében: ±1.0 cm

8.1.2 Az elemek külső felülete

Az előreállított vászetlen elemek külső felületének és éleinek építőknek kell lenniük. Az acélbetétek betonkeretével nem lehetnek tablázat.

A tartott legfeljebb felületi hajlóalapérték törthű, és átmenő repedések vagy törések nem engedhetők meg. Az elemek véglegesen is éles felületűn csak olyan károsítások és légszelvény csúszásnak, amelyek mélysége 5 mm-nél nem nagyobb. Azokat a felületeket, amelyek később helyzete a betonkerettel érintkeznek, a készítés során kell értesíteni. Az élek lecsatornálása legfeljebb az általában 3%-ban engedhető meg.

8.1.3 Szilárdsági követelmények

Az előreállított szerkezet építéséhez felhasznált anyagok és a kézző előreállított elemek, ill. szerkezet felületek meg a tervben, ill. az elrendezésben megadott szilárdsági követelmények.

8.1.4 Egyéb követelmények

8.1.1.2 Az alsóbetétevésben való elhelyezkedésnek méréstörvénye

<table>
<thead>
<tr>
<th>L (cm)</th>
<th>+A₀</th>
<th>-A₀</th>
<th>δ₀</th>
<th>+A₁</th>
<th>-A₁</th>
<th>δ₁</th>
<th>+A₂</th>
<th>-A₂</th>
<th>δ₂</th>
<th>+A₃</th>
<th>-A₃</th>
<th>δ₃</th>
<th>+A₄</th>
<th>-A₄</th>
<th>δ₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.10</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.20</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.30</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.40</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.50</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.60</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.70</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.80</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.90</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>1.00</td>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Az előreállított terv szerinti méréstechnikáját, az építőművek alkalmazását is megtalálhatja az A.3 műsorozatban.
o. A 8.21 pont szerint végzett anyagvizsgálatok nem sérnek olyan határozott eredményt, amely a gyártmény használhatóságát égységnélően előidéz. Ebben az esetben a kísérletet az építész által erre a célra bővült elemekben az építész előírásainak megfelelően kell végrehajtani.

1.5) 50-nél nagyobb számú egyforma elem készül. Ebben az esetben a kísérleti darabok száma az összes azonos elem számának általában 5%-a, de legalább 3 db legyen.

c) A tervsz kötelező előírja. Ilyenkor a kísérleteket a terv által előírt számú elemen, az ott megadott módon és körülmények között kell végrehajtani.

Kísérletek általában töréstől különbözők legyenek, de 15 t-nél nagyobb súlyú elemeknél megengedhető a próbakeresés is. A próbakeresés mértéke lehetőleg úgy kell megállapítani, hogy a vizsgált elem legjobban igénybe vehet keresztmetszetében a próbakeresésből keletkező igénybevételt az állandó terhekből és a biztonsági, ill. tükröződés tényezők nélkül szükségessé hasznos teherből keletkező igénybevételt elérje.

8.3 ÁTVÉTEL

Azokat az elemeket, amelyek a 8.1 pontban feltűnt műszaki követelményeket a 8.2 pont szerint végre hajtott vizsgálatok során kidolgozták, megfelelőnek kell minősíteni.

8.3.1 Azokat az elemeket, amelyek a 8.11, 8.12 pont alatti felteteleket nem eléggé teljesítik, felül kell vizsgálni.

8.3.2 Azokat az elemeket pedig, amelyek a 8.13 pont szerinti szilárdsági követelményeket nem eléggé teljesítik, csakként szilárdsgőzésnek kell minősíteni és ezeket a tervezett módon felhasználni nem szabad.

8.4 VIZSGÁLATOK AZ ÁTVÉTEL UTÁN

A minősítégi átvétel elemeket abból a szempontból is ellenőrizni kell, hogy a stabilítás, rákodás, tárolás, beépítés, összetétel stb. tervek és utasítások előírásainak megfelelően történik-e. Ezeknek a műveleteknek során esetleg megérthető elemeket újra vizsgálat tárgyaként kell tenni.
I. FORGALOMBAHELYEZÉS

Forgalombahelyezés előtt minden új, átépített vagy megerősített közúti híd és műszaki meg meg kell vizsgálogatni.
Az 1.211 pontban felsorolt esetekben, valamint a KPM külön rendelkezése a műszaki megvizsgálás során próbaterhelést is kell tartani.

1.1 A FORGALOMBA HELYEZÉST MEGELŐZŐ MŰSZAKI MEGVISZGÁLÁS

1.1.1 Általánosságban

1.1.11 A műszaki megvizsgálás elrendelését az építőcégnek a KPM-től kell kérnie. Az erre vonatkozó előkeresztjelzésben szabáson fel kell tüntetni ill. meg kell adni: a híd helyét (út száma, neve, jelleg és kilométerállomás), a híd alakját és méretét, a hídhoz tartozó területet, az építőcég és a híd leírását, a híd alapjai és hajló részei.

1.1.2 Az építőcégnek gondoskodni kell arról, hogy a műszaki megvizsgálás időpontjában a híd minden műszaki és gépi része megfelelően megviszonylandó álljon.

1.1.2.1 A műszaki megvizsgálás során nem kell természetesen az építőcégnek azt kellően, hogy a híd és a hídhoz tartozó terület minden építőcégnek megfelelően megfelelőnek, és azok a rendelkezések és ezen szigorú elvizek és esetleges fényképek.

1.1.2.2 A műszaki megvizsgálás során meg kell állapítani, hogy a híd és a hídhoz tartozó terület minden építőcégnek megfelelően megfelelőek és azok az esetleges szigorú elvizek és ezen szigorú elvizek.
2.3 ÉVENKÉNI HIDVIGSZÁLAT

2.31 Az évenkénti vizsgálatot a hídonkertől következőed. Az évenkénti vizsgálatot csak mérnökök végezhetik, de lehetőleg annak a műszaki középen számlolóként, akik az utesd megválaszoló vizsgálatot tartották.

2.32 Az évenkénti vizsgálat pontosságában az 1.1 pontban megadott szempontok szerint kell végezni. Az eszközök és vízmérőként vízmérőként és ezekhez kapcsolódó vizsgálatokat azonban csak személyzet ültet, segéd-

2.33 A készülék vízmérőként kötetet hídfele és pilléreként — különösen nagyobb folyókban — mélység-

2.34 A vizsgálat eredményéről, az észlelt hiányokról, rendellenességekről és az esélyeztetett általános és biztonsági hatályokról, a híd vízvágásai kapcsán, a vízvágásokról készült jegyzéknövekre és ezekhez kapcsolódó vásárló irodákban következtethetnek.

2.4 IDŐSZAKOS HIDVIGSZÁLAT

2.41 Az időszakos hidviggázlatok rendkívül a hídonkertől következett, a vizsgálat elrendezését a KPM-ként kell megfelelő időben kérni.

2.42 A részletek időszakos vizsgálatot mérnökök végezzenek. A vizsgálatokat észlelt hiányokról rendelkezésre állóként kell becslenni az idő-törzskönyv minősítésként, a jövő-

2.43 A vizsgálatok ki kell terjeszteni az észlelt hídon és valaminti terepeként, a szót az 1.1 pontban megadott szempontok szerint kell végezni.

2.44 A vizsgálatok során az is meg kell állapítani, hogy nem keletkeznek-e mérnökök keletkeznek-e a hídfele és pilléreként kötetet hídfele mélység mérőként, és ezekhez kapcsolódó vízmérőként és ezekhez kapcsolódó vízmérőként következzen levezetési rendellenességekkel.

2.45 Az időszakos vizsgálatok eredményéről, az észlelt hiányokról, rendellenességekről és az esélyeztetett általános és biztonsági hatályokról, a híd vízvágásai kapcsán, a vízvágásokról készült jegyzéknövekre és ezekhez kapcsolódó vásárló irodákban következtethetnek.

2.5 VÉGZETÉS

2.51 A híd területéről az időszakos vizsgálatokat két évben kell végezni, és minden évben kell megjelent megfelelő dokumentumokat.

2.52 Az időszakos vizsgálatok eredményétől, az észlelt hiányokról, rendellenességekről és az esélyeztetett általános és biztonsági hatályokról, a híd vízvágásai kapcsán, a vízvágásokról készült jegyzéknövekre és ezekhez kapcsolódó vásárló irodákban következtethetnek.

2.53 A híd területéről az időszakos vizsgálatokat két évben kell végezni, és minden évben kell megjelent megfelelő dokumentumokat.

2.54 Az időszakos vizsgálatok eredményétől, az észlelt hiányokról, rendellenességekről és az esélyeztetett általános és biztonsági hatályokról, a híd vízvágásai kapcsán, a vízvágásokról készült jegyzéknövekre és ezekhez kapcsolódó vásárló irodákban következtethetnek.
4. VEGYES RENDELKEZÉSEK

4.1 A megengedettnél nagyobb terhek csak az illetékes közút kiindulásától kell időben való előzetes bejelentése után, a kiindulás-kapcsoló alapján szállíthatók és a hídön.

4.2 Vasúti közlekedésre is szolgáló közút hídak esetében a mindenkori érvényes Vasúti Hídhasználat előírását is be kell tartani.

4.3 Ha valamilyen esetben ennek a szabályzatnak (Közút Hídszabályzatak) előírásától való eltérésem megszokottak, vagy olyan körülmények forrásának fenn, amelyekre nézve ez a szabályzat nem indokolódik, esetenként a KPM rendelkezéseit kell kikérni.
I. MÉZÁLTALÁNOS ADATOK

…………………..állami
…………………..városi közút
…………………..km szelvényében
…………………..községi

…………………..megyében
…………………..város

torülletén.

2. A híd száma és neve:

3. Az áthidalts akadály (vízfolyás, völgy, út, vasút) neve:

4. Híd tulajdonosa:

5. Hidfenntartó:

6. Szabadsellyes aj ferdén:

 b) mértégesen:

7. Szerkezeti hossz:

8. Teljes hossz:

9. Szélesség korlátozó között:

 gyalogjáró: m
 kocsipálya: m
 gyalogjáró: m

 összes szélesség: m

10. Telherbírás:
2. rész. A SZERKEZET RENDSZERE ÉS FŐBB MÉRETEI.

3.12 b. Hoszas leírás helyett a törzskönyvhez hozzá kell fűzni, vagy ide beragasznad a Közületi Hídsza-

bályzat 3.12 b. pontjában felsorolt valamennyi adatot tartalmazó vázlatrajzot.
3. rész. AZ ÉPÍTÉSRE ÉS KÖLTSÉGEKRE VONATKOZÓ FŐBB ADATOK

3.12 c. 1. A tervek jóváhagyására vonatkozó rendeletek száma, a jóváhagyó hatóság megnevezése:

2. Az építés ideje: ... év ... hétől ... év ... hőig

3. A tervező (tervezők) neve:

4. A kiviteloző vállalat neve:

5. Az építés ellenőrzését teljesítette:

6. Az építési anyagok minősége és származási helye:

a) Kövek

b) Cement

c) Acél

d) ..

7. Anyagok megvizsgálatára vonatkozó adatok:
 (Helye, eredménye, bizonyítvány vagy jogy-
 zókonyv száma. Megemlítenés annak, hogy a vonatkozó bizonyítványok, jegyzőkönyvek stb. hol
 találhatók.)

8. Az összeszerkezet műszerezésére vonatkozó adatok:
 Szerkezet súlya, s — amennyiben megállapítást nyert — a szerkezet méretet felülette:

9. Az építés alatt előforduló fontosabb, s esetleg a HÉD fonnoutására és zavarosságára is befo-
 lyással bíró események:

fő. Az ünnsülben bekövetkezhető olyan változás, amelyet a tervezés figyelembe vett.
3.12 d. Költségek (Ft)

1. Alépülményi munkák

<table>
<thead>
<tr>
<th>Hidők</th>
<th>Ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilótek</td>
<td>Ft</td>
</tr>
<tr>
<td>Együt</td>
<td>Ft</td>
</tr>
</tbody>
</table>

2. Felszerkezet

| | Ft |

3. Egyéb kapcsolatos munkák (fől járól, biztosítási munkák, mediórrendezések, tervezés stb. Egyéb költségek)

| | Ft |

4. Összes költség

| | Ft |

5. Végdátakozások és korlátozások belőle éle költség mért pályafutélet nagyság

| | m² |

6. 1 m² pályafutére eső költség:

| | Ft |

7. 1 fm pályafutére eső költség:

| | Ft |

3.12 e. 1. A próbaterhelés ideje:

2. Eredményét jóváhagyó rendelet száma:

3. Fontosabb rendelkezések: (Észlelt utalás az eredetiben vagy másolatban a törzskönyvhöz fűzési próbaterhelési jegyzőkönyvre. Feltöltő módon piros tintával) jegyzendők: azok a rendelkezések, melyek később is folytadó megígérésére vonatkoznak.

4. Terhelések (nyugvó vagy mozgó). (Részletezés vagy utalás a próbaterhelési jegyzőkönyvre).

5. Behajlásra vonatkozó adatok. (Számértéke rugalmas behajlás a csatolandó behajlásáramlat szerint. Észlelt teljes behajlás, észlelt rugalmas és észlelt maradó behajlások.) (Részletezés vagy utalás a próbaterhelési jegyzőkönyvre).

6. Észlelt behajlások a megengedett határon belül maradtak-e?

7. Forgalomhelyezés napja: év, hó, m.
3.12 f. A próbaberhelésnél megjelölt és beszintezett pontok magassága a próbaberhelés után.
1. Fix pontok helye és ezek magassága. (A. F. magasságok az országos szintezés hasonlító síkjához képest.)
Válasz.

2. Észlelési pontok helye és ezek magassága az alépítményen a fix pont magasságához viszonyítva.
Válasz.

3. Észlelési pontok helye és magassága a felszerkezeten a fix pont magasságához viszonyítva.
Válasz.

3.12 h. Nyitott hidaknál a felső övek egymástól való távolsága (a mérési három hely megjelölésével).
Válasz.

5. rész. A HIDON ESETLEG BETARTANDÓ FORGALMI KORLÁTOZÁSOK

3.12 g. 1. Forgalmi korlátozások. (Minden bejegyzés alkalmával hivatkozni kell a rendelkezére, mely a korlátozást elrendelte.)

2. Intézkedések — ha meg vannak állapítva —, melyek szükségesek, hogy a híd méretcsoportossága mérésénél alapulóvétel alapján súlyosabb jármű, gép stb. is áthidalhasson a hídon. (Bejegyzésnél hivatkozni kell a rendelkezére.)
6. rész. HIDVIZSGÁLATOK, JAVITÁSOK, stb.
3.12 i. 1. lóásvizkos hidvizsgálatok

<table>
<thead>
<tr>
<th>Vizsgálás idője</th>
<th>Rendelet száma</th>
<th>Ki végezze</th>
<th>Eredmény</th>
<th>Rendelkezések</th>
</tr>
</thead>
</table>

3.12 j. 2. Évenkénti hidvizsgálatok

<table>
<thead>
<tr>
<th>Vizsgált idő</th>
<th>Rendelet száma</th>
<th>Ki végezze</th>
<th>Eredmény</th>
<th>Rendelkezések</th>
</tr>
</thead>
</table>

3. Esetleg eszközölt ásalkítások, erősítések, javítások, újból másolások ideje, módja és költsége.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A hid építéséhez vagy átépítéséhez felhasznált főbb anyagok mennyisége:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>betonkavics</td>
<td>m³</td>
<td></td>
</tr>
<tr>
<td>cement</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>kö</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>a) építői</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>b) ütépfédi</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>acél</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>a) betonacél</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>b) idomacél</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>bicumen</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>fa</td>
<td>m²</td>
<td></td>
</tr>
<tr>
<td>a) átvényfa</td>
<td>m²</td>
<td></td>
</tr>
<tr>
<td>b) zaluzóanyag</td>
<td>m²</td>
<td></td>
</tr>
</tbody>
</table>
HÍDLAP

2. sz.

állami városi község km szelvényében levő község

hőről példány

A hídlap hídfennságtartónál érzelék első példányának mellékeltei: dob terv dob számítás dob forgalomberelezés melegítő vízzugtató, próbaborítás, leszámlalás, stb. jegyzőkönyv és irat a hídlap minőként példányhoz csatlakozza részletes terv és iratjegyzék szerint.

Készítette: Jóváhagyva:

19...év...hó...n. 19...év...hó...n
kelt...számú rendelettel

(P. H.) (P. H.)

1. A híd helye: a. sz. ...
 Állami
 várói közút ... km szelvényében
 községi
 megyében ... város
 területén ... község

2. A híd száma és neve:

3. Az áchídak szakadály (vízfolyás, völgy, út, vasút) neve:

4. Szabadnyíllás
 a) ferdén:
 b) merőlegesen:

5. Támaszköz
 a) ferdén:
 b) merőlegesen:

6. Szerkezeti hossz:

7. Teljes hossz:

8. Szélesség korlátok között:
 gyalogjáró, kocsipálya, gyalogjáró, összesen.

9. Pályafelület (szerkezeti hossz x korlátok közötti összes szélesség):

10. Alépítmény anyaga, alapozási módszer:

11. Felszerkezet anyaga és rendszere:

12. Teherbírás:

13. Hídépítés éve:

14. A híd tervezője:

15. Kivitelező vállalat:

16. Hídépítés költsége:

17. 1 m² pályafelületre eső költség:

18. 1 m hídosszra (szerkezeti hosszra) eső költség:

Válaszrajz helye:

A szerkezeti rendszerét, főbb méreteit, általaj és alapozás adatait, valamint a „Közúti Hídészabályzat” 3.12 b. pontjában előírt adatokat tartalmazó válaszrajz helye. (Válaszrajzzal a szöveg leragasztandó.)

A híd áthelyezésre vonatkozó készítmény megjegyzések: (Ezeknek részletes feljegyzéses céljából szükség esetén a hídáphoz kiegésző példapelet kell hozzáfűzni.)
A hid építéséhez vagy átépítéséhez felhasznált főbb anyagok mennyisége:

<table>
<thead>
<tr>
<th>Betonkavics</th>
<th>m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>q</td>
</tr>
<tr>
<td>Kő</td>
<td>q</td>
</tr>
<tr>
<td>a) építési</td>
<td></td>
</tr>
<tr>
<td>b) útépítési</td>
<td></td>
</tr>
<tr>
<td>Acel</td>
<td>q</td>
</tr>
<tr>
<td>a) betoncél</td>
<td></td>
</tr>
<tr>
<td>b) idomcol</td>
<td></td>
</tr>
<tr>
<td>Betumen</td>
<td>q</td>
</tr>
<tr>
<td>Fa</td>
<td>m³</td>
</tr>
<tr>
<td>a) átványfa</td>
<td></td>
</tr>
<tr>
<td>b) zsaliszanyag</td>
<td></td>
</tr>
</tbody>
</table>

NYILVÁNTARTÁS

a számú számú városi közúton közégi
levő 2,00 m-nél nagyobb nyílású közúti hídakról

Kiöltöztette: 19. évi hó n.

Helyesbírte: 19. évi hó n.

A nyilvántartást a közlekedés- és postasúgyi miniszter 21/2/1956. TM u. rendeletével kiadott „Közúti Hídábrázolat” 1. fejezetének 3. pontjában foglalt rendelkezéseket pontos betartásával kell követni.
<table>
<thead>
<tr>
<th>No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
A SÖVEGBEN IDÉZETT SZABVÁNYOK
Durvalleke azélből (8 mm és annál vastagsabb) átszállásos használatra ésزيدوس
Nem ismétlődő, övösszölni szerkezeti acél melegén hengert ill. kovácsolt
Próbáablak kiválasztása, Próbabérlés, megyemunkálása és kezelése
Acellokk és fémek. Szállítsági vizsgálatok
Gépipari, üzemeltetés, hengertill. kovácsolt
Szerkezeti acél, üvöltetlen, hengertill. Szerkezettel
Szegecszel
Whiteworth-mere
Normál métermerték méretek és törvény I. és II. számú életműveg
Cserakok, Műszaki szállítási feltételek
Betoncsel, Mindenq: Méretes
Építőipar szövegek építőipari számítás, építőipar szövegek iránya és szöveget
Építőipar szövegek építőipari számítás, építőipar szövegek súlya
Építőipar szövegek építőipari számítás, építőipar szövegek súlya
Rakcsövek termékek vizsgálata
Beton és alapszövödnak vizsgálata
Természeti kövek vizsgálata és módoszere
Outkányozott, betonalkakkanyagok, homokos karnyom, természeti kövek aprításából

- nyers szegecs
- kőalapítók és szegecs
- Cserakok és törvényi méretek, törvényi méretek
- Vas- és acélönvény műszaki szállítási és átvételi feltételei, minőségek
- Szövegek átvételi tisztázára
- Szövegek fejüzemére
- Szegecs, hagyományos szövegek
- Szegecs, félünnzfűnő szövegek
- Lencsefűnő szövegek
- Szegecs
- Hageszövéz, Varralások
- Hageszövéz, teljesítményet a rajzokon
- Hageszövéz
- Az acélk hageszövőedés
- A hageszövek szállítási vizsgálata
- Kötőszövetes vizsgálata
- Talajfelföl és talajfomintvater alaposító tervezésével
- Szövegek és cserakok rajzolás, távolsági és gyakorlati acélfontékozások
- Cserák, Portlandcement, Kilbázaiportlandcement, Trazzportlandcement
- Hidegen húzott különleges betoncélzott szerkezetei művelet
- Hageszövéz elektroművek acélk hageszövőedése
- Különleges acélt hageszövőedés és járműfürdők könnyítés
- Acsélerekeszövek hageszövőedés, Tervezés
- Készítés
- Fanyagok szállítási vizsgálata
- A fanyagok nodalvászntalálomának meghatározása
- Szegecs, hűsítés
- Utépítés
- Alkatrésztervek, tehervizsgálat, teljesítménytervezés
- Irányelvek, alapadatok tervezésre, Alapadatok
- Tervezési előkészületek és az alaposítás megvalósítása
- Szakmai számlás
- Alapadatok
- Skálázás
<table>
<thead>
<tr>
<th>Témakör</th>
<th>Műszaváltozás</th>
</tr>
</thead>
<tbody>
<tr>
<td>Célópályázás</td>
<td>MNOSz 5005 R</td>
</tr>
<tr>
<td>Közalapozás</td>
<td>MNOSz 5006 R</td>
</tr>
<tr>
<td>Légnymásos alapozás</td>
<td>MNOSz 5007 R</td>
</tr>
<tr>
<td>Alapozások makrosporózus talajban</td>
<td>MNOSz 5008 K</td>
</tr>
<tr>
<td>Épületek teherhordó szerkezetének méretezése, Kő-, tégla-, vasbeton és betoncsontszerkezetek</td>
<td>MNOSz 5023</td>
</tr>
<tr>
<td>Építőipari kivitelezési munkák</td>
<td>MNOSz 5101</td>
</tr>
<tr>
<td>Köhányás, körképző és részösszekalács munka</td>
<td>MNOSz 5119</td>
</tr>
<tr>
<td>Építőipari kivitelezési munkák, Akáciatermesztés munka</td>
<td>MNOSz 5141</td>
</tr>
<tr>
<td>Vízépítési műtárgyak szennyezési mérhetősége, A mérhetőség szabályai</td>
<td>MNOSz 5226 R</td>
</tr>
<tr>
<td>Utépítés, Főközlekedési útak tervezési irányelvei</td>
<td>MNOSz 5366 R</td>
</tr>
<tr>
<td>Csatortervezés és méretezés, Közzetermelés</td>
<td>MNOSz 5300 R</td>
</tr>
<tr>
<td>Habarcok, Falasztóhabarcok</td>
<td>MNOSz 6000</td>
</tr>
<tr>
<td>Előregyártott vasbeton és fesztázt beton szerkezeti elemek, Vizsgálat és mindjelenet</td>
<td>MNOSz 16030 T</td>
</tr>
</tbody>
</table>

BETŰRENDES TÁRGY MUTATÓ
A tárgy mellett levő szegyedű a vonaszője fejezetet, a történelmi út után az oldalszámot jelenti. Pl.: „Lemeszes gerenda F/3.3-88” azt jelenti, hogy a lemeszes gerendák vonaszője előírások az F. fejezet 3.3 pontjában, a 88. oldalon találhatók.

A

Abrams-féle modulus F/1.3-82; 7/1.3-144
Acélanyag D/1-43
— rugalmassági tényező D/2.2-44
Acélalkotás anyaga F/1.81; H/1.2-123; J/1.1-143
— elhelyezés F/6.3.3-104; F/6.43-105; K/7.4-163
— határfelettsége F/4.51-100
— kimondás F/2.2-1401
— rugalmassági tényezőjé F/2.3-66; J/2.6-148
— szerkezeti szabályi F/6.2-101; J/6.1-155
— szödás F/6.213-102; K/7.4-163
— tűnyíltatós hossz F/6.212-103;
Acélgyűrű H/6.52-137
Acéloszteres körzek H/6.51-137
Acélhuzal anyaga J/1.1-143
— előterhelés J/7.1-153
— határfelettsége J/4.7-153
— lastó alkalmazás J/2.3-147
— megengedés lehorgonyzásnál J/2.5-32-143
— minőségi trükk J/1.1-143
— minőségi vizsgálat J/1.1-143
— rovakválas F/1.6-155
— rugalmassági tényező J/2.6-148
— utánavtalálás J/4.7-153
— vonaszövege F/6.212-155
Acutaközteség D/3.145; E/1-71; F/1.81; H/1.2-123;
J/1.1-143
Acélöntvény anyaga D/1.3-43
— határfelettsége D/4.4-64
Acélszerkezetek anyaga D/1.1-43
— gránátor D/6.11-63
— határfelettsége D/4.4-47
— szerelése D/6.11-63
Adalékszükség F/3.3-82; G/1.2-111; J/1.3-144
— vizsgálat F/1.3-82
Adatok, adatolgotás A/2.1-11
„A” erő D/3.32-24
Ahogyan található C/1.4-37
Alkatrészletek ellenőrzése B/5.5-33, D/5.63, F/2.6-67,
F/5.101, G/5.146, H/5.135, J/5.154, K/6-162
Alapozáskorok vonaszője előírások C/2.38
Alapozások G/6.2-116
Alaplapjaink eredeti számítása C/2.38
Altaivető F/6.28-104
Aló el magassága (vfdolás follet) A/4.321-18
Anyagkivonat A/2.25-15

14. felhasználás 2

Á

Ácskőzöve H/6.51-137
Állandó teher B/2.1-25 K/3.1-160
Állékonyság igazolása H/4-22
— vizsgálat alapfelmérések C/3.3-39
Áltványozási terv A/2.27-13
Áltványozási célcímelés B/5.3-33
Aláírásos terv A/2.22-12
Árverés A/2.27-13
Árstisztelme D/3.3-45
Árverés K/8.3-144
Árverés utáni vizsgálatok K/8.4-166

B

Bemutatás K/3.3-160
Bementes H/6.51-137
Bekötések szegyedű szerkezeteknél D/6.3-66
Bekötések anyaga H/1.2-123
— elhelyezés H/6.52-137
— mérétek H/6.52-137
Betét oszlopos H/5.52-137
Betétes adalékszükség F/1.3-82; G/1.22-111; J/1.3-144
— határfelettsége F/4.5-101; G/4.2-115; J/4.72-153
— minőségi jelölése F/5.1-85; G/5.21-115; J/1.5-145
— rugalmassági tényező F/2.4-86; G/2.4-113; J/2.7-
140
— szilárdsága feszülőké R/1.5-145
— szellődési megjelölése (1. betonvizsgálatok)
Betonláda F/1.1-81; J/1.1-143
— határfelettsége F/4.51-100
— minősége F/1.1-81
— szerkezeti szabályok F/6.2-101
Betonkőcsavarok G/6.4-117
Betonkerítések C/6.6-6-117
Betonfylkas F/6.2-105; J/6.11-155
Betonkőcsavarak E/6.2-101
Betonmérétek K/7.21-162
Betonminőségek F/5.1-85; G/1.25-111
Betonrács A/1.53-145; J/1.54-145
Betonrácsok védőminta G/6.1-118
Betonvizsgálatok F/5.1-85; G/5.21-115; J/1.5-145;
K/2.189
Béléslemez minimális merő D/6.15-63
Biztonsági tényező B/2.21-32
Biztonsági változóv A/4.112-16